Leveraging Personalized PageRank and Higher-Order Topological Structures for Heterophily Mitigation in Graph Neural Networks
- URL: http://arxiv.org/abs/2507.16347v1
- Date: Tue, 22 Jul 2025 08:28:18 GMT
- Title: Leveraging Personalized PageRank and Higher-Order Topological Structures for Heterophily Mitigation in Graph Neural Networks
- Authors: Yumeng Wang, Zengyi Wo, Wenjun Wang, Xingcheng Fu, Minglai Shao,
- Abstract summary: Graph Neural Networks (GNNs) excel in node classification tasks but often assume homophily, where connected nodes share similar labels.<n>Existing models for heterophilic graphs primarily rely on pairwise relationships, overlooking multi-scale information from higher-order structures.<n>We propose HPGNN, a novel model integrating Higher-order Personalized PageRank with Graph Neural Networks.
- Score: 3.8272811185904274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) excel in node classification tasks but often assume homophily, where connected nodes share similar labels. This assumption does not hold in many real-world heterophilic graphs. Existing models for heterophilic graphs primarily rely on pairwise relationships, overlooking multi-scale information from higher-order structures. This leads to suboptimal performance, particularly under noise from conflicting class information across nodes. To address these challenges, we propose HPGNN, a novel model integrating Higher-order Personalized PageRank with Graph Neural Networks. HPGNN introduces an efficient high-order approximation of Personalized PageRank (PPR) to capture long-range and multi-scale node interactions. This approach reduces computational complexity and mitigates noise from surrounding information. By embedding higher-order structural information into convolutional networks, HPGNN effectively models key interactions across diverse graph dimensions. Extensive experiments on benchmark datasets demonstrate HPGNN's effectiveness. The model achieves better performance than five out of seven state-of-the-art methods on heterophilic graphs in downstream tasks while maintaining competitive performance on homophilic graphs. HPGNN's ability to balance multi-scale information and robustness to noise makes it a versatile solution for real-world graph learning challenges. Codes are available at https://github.com/streetcorner/HPGNN.
Related papers
- ScaleGNN: Towards Scalable Graph Neural Networks via Adaptive High-order Neighboring Feature Fusion [37.22772892623285]
We propose ScaleGNN, a novel framework that adaptively fuses multi-hop node features for scalable and effective graph learning.<n>We show that ScaleGNN consistently outperforms state-of-the-art GNNs in both predictive accuracy and computational efficiency.
arXiv Detail & Related papers (2025-04-22T14:05:11Z) - GRAIN: Multi-Granular and Implicit Information Aggregation Graph Neural Network for Heterophilous Graphs [11.458759345322832]
Granular and Implicit Graph Network (GRAIN) is a novel GNN model specifically designed for heterophilous graphs.<n>GRAIN enhances node embeddings by aggregating multi-view information at various levels and incorporating implicit data from distant, non-neighboring nodes.<n>We also introduce an adaptive graph information aggregator that efficiently combines multi-granularity and implicit data, significantly improving node representation quality.
arXiv Detail & Related papers (2025-04-09T07:36:44Z) - Diffusing to the Top: Boost Graph Neural Networks with Minimal Hyperparameter Tuning [33.948899558876604]
This work introduces a graph-conditioned latent diffusion framework (GNN-Diff) to generate high-performing GNNs.
We validate our method through 166 experiments across four graph tasks: node classification on small, large, and long-range graphs, as well as link prediction.
arXiv Detail & Related papers (2024-10-08T05:27:34Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - Reducing Over-smoothing in Graph Neural Networks Using Relational
Embeddings [0.15619750966454563]
We propose a new simple, and efficient method to alleviate the effect of the over-smoothing problem in GNNs.
Our method can be used in combination with other methods to give the best performance.
arXiv Detail & Related papers (2023-01-07T19:26:04Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
We propose a new metric based on von Neumann entropy to re-examine the heterophily problem of GNNs.
We also propose a Conv-Agnostic GNN framework (CAGNNs) to enhance the performance of most GNNs on heterophily datasets.
arXiv Detail & Related papers (2022-03-19T14:26:43Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Breaking the Limit of Graph Neural Networks by Improving the
Assortativity of Graphs with Local Mixing Patterns [19.346133577539394]
Graph neural networks (GNNs) have achieved tremendous success on multiple graph-based learning tasks.
We focus on transforming the input graph into a computation graph which contains both proximity and structural information.
We show that adaptively choosing between structure and proximity leads to improved performance under diverse mixing.
arXiv Detail & Related papers (2021-06-11T19:18:34Z) - Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks [67.25782890241496]
We propose a higher-order Attribute-Enhancing Graph Neural Network (HAEGNN) for heterogeneous network representation learning.
HAEGNN simultaneously incorporates meta-paths and meta-graphs for rich, heterogeneous semantics.
It shows superior performance against the state-of-the-art methods in node classification, node clustering, and visualization.
arXiv Detail & Related papers (2021-04-16T04:56:38Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.