ScaleGNN: Towards Scalable Graph Neural Networks via Adaptive High-order Neighboring Feature Fusion
- URL: http://arxiv.org/abs/2504.15920v4
- Date: Thu, 26 Jun 2025 14:41:32 GMT
- Title: ScaleGNN: Towards Scalable Graph Neural Networks via Adaptive High-order Neighboring Feature Fusion
- Authors: Xiang Li, Jianpeng Qi, Haobing Liu, Yuan Cao, Guoqing Chao, Zhongying Zhao, Junyu Dong, Yanwei Yu,
- Abstract summary: We propose ScaleGNN, a novel framework that adaptively fuses multi-hop node features for scalable and effective graph learning.<n>We show that ScaleGNN consistently outperforms state-of-the-art GNNs in both predictive accuracy and computational efficiency.
- Score: 37.22772892623285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have demonstrated impressive performance across diverse graph-based tasks by leveraging message passing to capture complex node relationships. However, when applied to large-scale real-world graphs, GNNs face two major challenges: First, it becomes increasingly difficult to ensure both scalability and efficiency, as the repeated aggregation of large neighborhoods leads to significant computational overhead; Second, the over-smoothing problem arises, where excessive or deep propagation makes node representations indistinguishable, severely hindering model expressiveness. To tackle these issues, we propose ScaleGNN, a novel framework that adaptively fuses multi-hop node features for both scalable and effective graph learning. First, we construct per-hop pure neighbor matrices that capture only the exclusive structural information at each hop, avoiding the redundancy of conventional aggregation. Then, an enhanced feature fusion strategy significantly balances low-order and high-order information, preserving both local detail and global correlations without incurring excessive complexity. To further reduce redundancy and over-smoothing, we introduce a Local Contribution Score (LCS)-based masking mechanism to filter out less relevant high-order neighbors, ensuring that only the most meaningful information is aggregated. In addition, learnable sparse constraints selectively integrate multi-hop valuable features, emphasizing the most informative high-order neighbors. Extensive experiments on real-world datasets demonstrate that ScaleGNN consistently outperforms state-of-the-art GNNs in both predictive accuracy and computational efficiency, highlighting its practical value for large-scale graph learning.
Related papers
- Leveraging Personalized PageRank and Higher-Order Topological Structures for Heterophily Mitigation in Graph Neural Networks [3.8272811185904274]
Graph Neural Networks (GNNs) excel in node classification tasks but often assume homophily, where connected nodes share similar labels.<n>Existing models for heterophilic graphs primarily rely on pairwise relationships, overlooking multi-scale information from higher-order structures.<n>We propose HPGNN, a novel model integrating Higher-order Personalized PageRank with Graph Neural Networks.
arXiv Detail & Related papers (2025-07-22T08:28:18Z) - DeltaGNN: Graph Neural Network with Information Flow Control [5.563171090433323]
Graph Neural Networks (GNNs) are designed to process graph-structured data through neighborhood aggregations in the message passing process.<n>Message-passing enables GNNs to understand short-range spatial interactions, but also causes them to suffer from over-smoothing and over-squashing.<n>We propose a mechanism called emph information flow control to address over-smoothing and over-squashing with linear computational overhead.<n>We benchmark our model across 10 real-world datasets, including graphs with varying sizes, topologies, densities, and homophilic ratios, showing superior performance
arXiv Detail & Related papers (2025-01-10T14:34:20Z) - Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - Efficient Topology-aware Data Augmentation for High-Degree Graph Neural Networks [2.7523980737007414]
We propose TADA, an efficient and effective front-mounted data augmentation framework for graph neural networks (GNNs) on high-degree graphs (HDGs)
Under the hood, TADA includes two key modules: (i) feature expansion with structure embeddings, and (ii) topology- and attribute-aware graph sparsification.
TADA considerably improves the predictive performance of mainstream GNN models on 8 real homophilic/heterophilic HDGs in terms of node classification.
arXiv Detail & Related papers (2024-06-08T14:14:19Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Graph Transformers for Large Graphs [57.19338459218758]
This work advances representation learning on single large-scale graphs with a focus on identifying model characteristics and critical design constraints.
A key innovation of this work lies in the creation of a fast neighborhood sampling technique coupled with a local attention mechanism.
We report a 3x speedup and 16.8% performance gain on ogbn-products and snap-patents, while we also scale LargeGT on ogbn-100M with a 5.9% performance improvement.
arXiv Detail & Related papers (2023-12-18T11:19:23Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - Label Deconvolution for Node Representation Learning on Large-scale Attributed Graphs against Learning Bias [72.33336385797944]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias.<n>We show that LD significantly outperforms state-of-the-art methods on Open Graph Benchmark datasets.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Graph Ladling: Shockingly Simple Parallel GNN Training without
Intermediate Communication [100.51884192970499]
GNNs are a powerful family of neural networks for learning over graphs.
scaling GNNs either by deepening or widening suffers from prevalent issues of unhealthy gradients, over-smoothening, information squashing.
We propose not to deepen or widen current GNNs, but instead present a data-centric perspective of model soups tailored for GNNs.
arXiv Detail & Related papers (2023-06-18T03:33:46Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
We propose a novel adjacency-tensor-based textbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN)
THNN is faithful hypergraph modeling framework through high-order outer product feature passing message.
Results from experiments on two widely used hypergraph datasets for 3-D visual object classification show the model's promising performance.
arXiv Detail & Related papers (2023-06-05T03:26:06Z) - AGNN: Alternating Graph-Regularized Neural Networks to Alleviate
Over-Smoothing [29.618952407794776]
We propose an Alternating Graph-regularized Neural Network (AGNN) composed of Graph Convolutional Layer (GCL) and Graph Embedding Layer (GEL)
GEL is derived from the graph-regularized optimization containing Laplacian embedding term, which can alleviate the over-smoothing problem.
AGNN is evaluated via a large number of experiments including performance comparison with some multi-layer or multi-order graph neural networks.
arXiv Detail & Related papers (2023-04-14T09:20:03Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - Generalizing Aggregation Functions in GNNs:High-Capacity GNNs via
Nonlinear Neighborhood Aggregators [14.573383849211773]
Graph neural networks (GNNs) have achieved great success in many graph learning tasks.
Existing GNNs mainly adopt either linear neighborhood aggregation (mean,sum) or max aggregator in their message propagation.
We re-think the message propagation mechanism in GNNs and aim to develop the general nonlinear aggregators for neighborhood information aggregation in GNNs.
arXiv Detail & Related papers (2022-02-18T11:49:59Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.