LPTR-AFLNet: Lightweight Integrated Chinese License Plate Rectification and Recognition Network
- URL: http://arxiv.org/abs/2507.16362v1
- Date: Tue, 22 Jul 2025 08:54:32 GMT
- Title: LPTR-AFLNet: Lightweight Integrated Chinese License Plate Rectification and Recognition Network
- Authors: Guangzhu Xu, Pengcheng Zuo, Zhi Ke, Bangjun Lei,
- Abstract summary: We propose a lightweight, unified network named LPTR-AFLNet for correcting and recognizing Chinese license plates.<n>It combines a perspective transformation correction module (PTR) with an optimized license plate recognition network, AFLNet.<n>We demonstrate exceptional performance of LPTR-AFLNet in rectifying perspective distortion and recognizing double-line license plate images.
- Score: 1.1499574149885023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chinese License Plate Recognition (CLPR) faces numerous challenges in unconstrained and complex environments, particularly due to perspective distortions caused by various shooting angles and the correction of single-line and double-line license plates. Considering the limited computational resources of edge devices, developing a low-complexity, end-to-end integrated network for both correction and recognition is essential for achieving real-time and efficient deployment. In this work, we propose a lightweight, unified network named LPTR-AFLNet for correcting and recognizing Chinese license plates, which combines a perspective transformation correction module (PTR) with an optimized license plate recognition network, AFLNet. The network leverages the recognition output as a weak supervisory signal to effectively guide the correction process, ensuring accurate perspective distortion correction. To enhance recognition accuracy, we introduce several improvements to LPRNet, including an improved attention module to reduce confusion among similar characters and the use of Focal Loss to address class imbalance during training. Experimental results demonstrate the exceptional performance of LPTR-AFLNet in rectifying perspective distortion and recognizing double-line license plate images, maintaining high recognition accuracy across various challenging scenarios. Moreover, on lower-mid-range GPUs platform, the method runs in less than 10 milliseconds, indicating its practical efficiency and broad applicability.
Related papers
- Knowledge Regularized Negative Feature Tuning of Vision-Language Models for Out-of-Distribution Detection [54.433899174017185]
Out-of-distribution (OOD) detection is crucial for building reliable machine learning models.<n>We propose a novel method called Knowledge Regularized Negative Feature Tuning (KR-NFT)<n>NFT applies distribution-aware transformations to pre-trained text features, effectively separating positive and negative features into distinct spaces.<n>When trained with few-shot samples from ImageNet dataset, KR-NFT not only improves ID classification accuracy and OOD detection but also significantly reduces the FPR95 by 5.44%.
arXiv Detail & Related papers (2025-07-26T07:44:04Z) - TransLPRNet: Lite Vision-Language Network for Single/Dual-line Chinese License Plate Recognition [1.1499574149885023]
This paper proposes a unified solution that integrates a lightweight visual encoder with a text decoder.<n>To mitigate the scarcity of double-line license plate datasets, we constructed a single/double-line license plate dataset.<n>The proposed algorithm achieves an average recognition accuracy of 99.34% on the corrected CCPD test set under coarse localization disturbance.
arXiv Detail & Related papers (2025-07-23T09:03:01Z) - LD-RPMNet: Near-Sensor Diagnosis for Railway Point Machines [9.85616523216096]
This study proposes a lightweight model named LD-RPMNet that integrates Transformers and Convolutional Neural Networks.<n> Experimental results based on collected sound signals during the operation of railway point machines demonstrate that the optimized model reduces parameter count and computational complexity by 50%.<n>This demonstrates the possibility of near-sensor fault diagnosis applications in railway point machines.
arXiv Detail & Related papers (2025-06-01T17:30:19Z) - Breaking Complexity Barriers: High-Resolution Image Restoration with Rank Enhanced Linear Attention [54.42902794496325]
Linear attention, a variant of softmax attention, demonstrates promise in global context modeling.<n>We propose Rank Enhanced Linear Attention (RELA), a simple yet effective method that enriches feature representations by integrating a lightweight depthwise convolution.<n>Building upon RELA, we propose an efficient and effective image restoration Transformer, named LAformer.
arXiv Detail & Related papers (2025-05-22T02:57:23Z) - Federated Learning of Low-Rank One-Shot Image Detection Models in Edge Devices with Scalable Accuracy and Compute Complexity [5.820612543019548]
LoRa-FL is designed for training low-rank one-shot image detection models deployed on edge devices.<n>By incorporating low-rank adaptation techniques into one-shot detection architectures, our method significantly reduces both computational and communication overhead.
arXiv Detail & Related papers (2025-04-23T08:40:44Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
We develop a Global Context Aggregation Network (GCANet) for lightweight saliency detection of surface defects on the encoder-decoder structure.
First, we introduce a novel transformer encoder on the top layer of the lightweight backbone, which captures global context information through a novel Depth-wise Self-Attention (DSA) module.
The experimental results on three public defect datasets demonstrate that the proposed network achieves a better trade-off between accuracy and running efficiency compared with other 17 state-of-the-art methods.
arXiv Detail & Related papers (2023-09-22T06:19:11Z) - Overcoming Distribution Mismatch in Quantizing Image Super-Resolution Networks [53.23803932357899]
quantization leads to accuracy loss in image super-resolution (SR) networks.
Existing works address this distribution mismatch problem by dynamically adapting quantization ranges during test time.
We propose a new quantization-aware training scheme that effectively Overcomes the Distribution Mismatch problem in SR networks.
arXiv Detail & Related papers (2023-07-25T08:50:01Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - End-to-End High Accuracy License Plate Recognition Based on Depthwise
Separable Convolution Networks [0.0]
We propose a novel segmentation-free framework for license plate recognition and introduce NP-ALPR dataset.
The proposed network model consists of the latest deep learning methods and state-of-the-art ideas, and benefits from a novel network architecture.
We evaluate the effectiveness of the proposed method on three different datasets and show a recognition accuracy of over 99% and over 70 fps.
arXiv Detail & Related papers (2022-02-21T14:45:03Z) - BLPnet: A new DNN model and Bengali OCR engine for Automatic License
Plate Recognition [1.924182131418037]
This paper reports a computationally efficient and reasonably accurate Automatic License Plate Recognition (ALPR) system for Bengali characters.
With a Computational Neural Network (CNN)based new Bengali OCR engine, the model is characters rotation invariant.
The model feeding with17 frames per second (fps) on real-time video footage can detect a vehicle with the Mean Squared Error (MSE) of 0.0152, and the mean license plate character recognition accuracy of 95%.
arXiv Detail & Related papers (2022-02-18T22:58:53Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
We propose a design paradigm for cost-effective network with LR representation for efficient pose estimation, named FasterPose.
We study the training behavior of FasterPose, and formulate a novel regressive cross-entropy (RCE) loss function for accelerating the convergence.
Compared with the previously dominant network of pose estimation, our method reduces 58% of the FLOPs and simultaneously gains 1.3% improvement of accuracy.
arXiv Detail & Related papers (2021-07-07T13:39:08Z) - Rethinking and Designing a High-performing Automatic License Plate
Recognition Approach [16.66787965777127]
We propose a novel automatic license plate recognition (ALPR) approach, termed VSNet.
VSNet includes two CNNs, i.e., VertexNet for license plate detection and SCR-Net for license plate recognition, which is integrated in a resampling-based cascaded manner.
Experimental results show that the proposed VSNet outperforms state-of-the-art methods by more than 50% relative improvement on error rate.
arXiv Detail & Related papers (2020-11-30T16:03:57Z) - Enabling certification of verification-agnostic networks via
memory-efficient semidefinite programming [97.40955121478716]
We propose a first-order dual SDP algorithm that requires memory only linear in the total number of network activations.
We significantly improve L-inf verified robust accuracy from 1% to 88% and 6% to 40% respectively.
We also demonstrate tight verification of a quadratic stability specification for the decoder of a variational autoencoder.
arXiv Detail & Related papers (2020-10-22T12:32:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.