Latent-space Field Tension for Astrophysical Component Detection An application to X-ray imaging
- URL: http://arxiv.org/abs/2506.20758v1
- Date: Wed, 25 Jun 2025 18:45:18 GMT
- Title: Latent-space Field Tension for Astrophysical Component Detection An application to X-ray imaging
- Authors: Matteo Guardiani, Vincent Eberle, Margret Westerkamp, Julian Rüstig, Philipp Frank, Torsten Enßlin,
- Abstract summary: We introduce a novel multi-frequency Bayesian model of the sky emission field that leverages latent-space tension as an indicator of model misspecification.<n>We demonstrate the effectiveness of this method on synthetic multi-frequency imaging data and apply it to observational X-ray data from the eROSITA Early Data Release (EDR) of the SN1987A region in the Large Magellanic Cloud (LMC)<n>Our results highlight the method's capability to reconstruct astrophysical components with high accuracy, achieving sub-pixel localization of point sources, robust separation of extended emission, and detailed uncertainty quantification.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern observatories are designed to deliver increasingly detailed views of astrophysical signals. To fully realize the potential of these observations, principled data-analysis methods are required to effectively separate and reconstruct the underlying astrophysical components from data corrupted by noise and instrumental effects. In this work, we introduce a novel multi-frequency Bayesian model of the sky emission field that leverages latent-space tension as an indicator of model misspecification, enabling automated separation of diffuse, point-like, and extended astrophysical emission components across wavelength bands. Deviations from latent-space prior expectations are used as diagnostics for model misspecification, thus systematically guiding the introduction of new sky components, such as point-like and extended sources. We demonstrate the effectiveness of this method on synthetic multi-frequency imaging data and apply it to observational X-ray data from the eROSITA Early Data Release (EDR) of the SN1987A region in the Large Magellanic Cloud (LMC). Our results highlight the method's capability to reconstruct astrophysical components with high accuracy, achieving sub-pixel localization of point sources, robust separation of extended emission, and detailed uncertainty quantification. The developed methodology offers a general and well-founded framework applicable to a wide variety of astronomical datasets, and is therefore well suited to support the analysis needs of next-generation multi-wavelength and multi-messenger surveys.
Related papers
- STAR: A Benchmark for Astronomical Star Fields Super-Resolution [51.79340280382437]
We propose STAR, a large-scale astronomical SR dataset containing 54,738 flux-consistent star field image pairs.<n>We propose a Flux-Invariant Super Resolution (FISR) model that could accurately infer the flux-consistent high-resolution images from input photometry.
arXiv Detail & Related papers (2025-07-22T09:28:28Z) - Physics-Guided Dual Implicit Neural Representations for Source Separation [70.38762322922211]
We develop a self-supervised machine-learning approach for source separation using a dual implicit neural representation framework.<n>Our method learns directly from the raw data by minimizing a reconstruction-based loss function.<n>Our method offers a versatile framework for addressing source separation problems across diverse domains.
arXiv Detail & Related papers (2025-07-07T17:56:31Z) - CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis [75.25966323298003]
Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding.<n> variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies.<n>We introduce $textbfCARL$, a model for $textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$ across RGB, multispectral, and hyperspectral imaging modalities.
arXiv Detail & Related papers (2025-04-27T13:06:40Z) - A New Statistical Model of Star Speckles for Learning to Detect and Characterize Exoplanets in Direct Imaging Observations [37.845442465099396]
This paper presents a novel statistical model that captures nuisance fluctuations using a multi-scale approach.<n>It integrates into an interpretable, end-to-end learnable framework for simultaneous exoplanet detection and flux estimation.<n>The proposed approach is computationally efficient, robust to varying data quality, and well suited for large-scale observational surveys.
arXiv Detail & Related papers (2025-03-21T13:07:55Z) - A method based on Generative Adversarial Networks for disentangling physical and chemical properties of stars in astronomical spectra [0.16385815610837165]
In this work, an encoder-decoder architecture has been designed, where adversarial training is used in the context of astrophysical spectral analysis.
A scheme of deep learning is used with the aim of unraveling in the latent space the desired parameters of the rest of the information contained in the data.
To test the effectiveness of the method, synthetic astronomical data are used from the APOGEE and Gaia surveys.
arXiv Detail & Related papers (2024-11-08T20:45:09Z) - Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Hyperspectral Dataset and Deep Learning methods for Waste from Electric and Electronic Equipment Identification (WEEE) [0.0]
We evaluate the performance of diverse deep learning architectures for hyperspectral image segmentation.
Results show that incorporating spatial information alongside spectral data leads to improved segmentation results.
We contribute to the field by cleaning and publicly releasing the Tecnalia WEEE Hyperspectral dataset.
arXiv Detail & Related papers (2024-07-05T13:45:11Z) - Boosting the Generalization Ability for Hyperspectral Image Classification using Spectral-spatial Axial Aggregation Transformer [14.594398447576188]
In the hyperspectral image classification (HSIC) task, the most commonly used model validation paradigm is partitioning the training-test dataset through pixel-wise random sampling.
In our experiments, we found that the high accuracy was reached because the training and test datasets share a lot of information.
We propose a spectral-spatial axial aggregation transformer model, namely SaaFormer, that preserves generalization across dataset partitions.
arXiv Detail & Related papers (2023-06-29T07:55:43Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
We implement a deep neural network to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field.
These results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
arXiv Detail & Related papers (2022-08-01T19:18:26Z) - Deep Learning Models of the Discrete Component of the Galactic
Interstellar Gamma-Ray Emission [61.26321023273399]
A significant point-like component from the small scale (or discrete) structure in the H2 interstellar gas might be present in the Fermi-LAT data.
We show that deep learning may be effectively employed to model the gamma-ray emission traced by these rare H2 proxies within statistical significance in data-rich regions.
arXiv Detail & Related papers (2022-06-06T18:00:07Z) - Spatio-temporally separable non-linear latent factor learning: an
application to somatomotor cortex fMRI data [0.0]
Models of fMRI data that can perform whole-brain discovery of latent factors are understudied.
New methods for efficient spatial weight-sharing are critical to deal with the high dimensionality of the data and the presence of noise.
Our approach is evaluated on data with multiple motor sub-tasks to assess whether the model captures disentangled latent factors that correspond to each sub-task.
arXiv Detail & Related papers (2022-05-26T21:30:22Z) - Explainable Predictive Modeling for Limited Spectral Data [0.0]
We introduce applying recent explainable AI techniques to interpret the prediction outcomes of high-dimensional and limited spectral data.
Due to instrument resolution limitations, pinpointing important regions of the spectroscopy data creates a pathway to optimize the data collection process.
We specifically design three different scenarios to ensure that the evaluation of ML models is robust for the real-time practice.
arXiv Detail & Related papers (2022-02-09T15:46:17Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
We focus on unsupervised techniques for analyzing spectral data from transiting exoplanets.
We show that there is a high degree of correlation in the spectral data, which calls for appropriate low-dimensional representations.
We uncover interesting structures in the principal component basis, namely, well-defined branches corresponding to different chemical regimes.
arXiv Detail & Related papers (2022-01-07T22:26:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.