論文の概要: From Flat to Round: Redefining Brain Decoding with Surface-Based fMRI and Cortex Structure
- arxiv url: http://arxiv.org/abs/2507.16389v1
- Date: Tue, 22 Jul 2025 09:34:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:14.048055
- Title: From Flat to Round: Redefining Brain Decoding with Surface-Based fMRI and Cortex Structure
- Title(参考訳): フラットからラウンドへ:表面型fMRIと皮質構造を用いた脳のデコード再定義
- Authors: Sijin Yu, Zijiao Chen, Wenxuan Wu, Shengxian Chen, Zhongliang Liu, Jingxin Nie, Xiaofen Xing, Xiangmin Xu, Xin Zhang,
- Abstract要約: 人間の脳活動(例えばfMRI)から視覚刺激を再構築することは神経科学とコンピュータビジョンを橋渡しする。
球面上の空間的コヒーレントな2次元球面データとしてfMRI信号を明示的にモデル化する新しいスフィア・トークンーザを提案する。
また、構造MRIデータの統合も提案し、個々の解剖学的変動をパーソナライズした符号化を可能にする。
- 参考スコア(独自算出の注目度): 11.760848227175591
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing visual stimuli from human brain activity (e.g., fMRI) bridges neuroscience and computer vision by decoding neural representations. However, existing methods often overlook critical brain structure-function relationships, flattening spatial information and neglecting individual anatomical variations. To address these issues, we propose (1) a novel sphere tokenizer that explicitly models fMRI signals as spatially coherent 2D spherical data on the cortical surface; (2) integration of structural MRI (sMRI) data, enabling personalized encoding of individual anatomical variations; and (3) a positive-sample mixup strategy for efficiently leveraging multiple fMRI scans associated with the same visual stimulus. Collectively, these innovations enhance reconstruction accuracy, biological interpretability, and generalizability across individuals. Experiments demonstrate superior reconstruction performance compared to SOTA methods, highlighting the effectiveness and interpretability of our biologically informed approach.
- Abstract(参考訳): 人間の脳活動(例えばfMRI)から視覚刺激を再構成することは、神経表現をデコードすることで神経科学とコンピュータビジョンを橋渡しする。
しかし、既存の手法は、しばしば重要な脳の構造と機能の関係を見落とし、空間情報を平らにし、個々の解剖学的変異を無視している。
これらの課題に対処するために,(1)脳皮質表面の空間的コヒーレントな2次元球面データとしてfMRI信号を明示的にモデル化する新しいスフィアトークン,(2)個々の解剖学的変化をパーソナライズする構造MRI(sMRI)データの統合,(3)同じ視覚刺激に関連する複数のfMRIスキャンを効率的に活用するための正のサンプル混成戦略を提案する。
これらの革新は、再構築の精度、生物学的解釈可能性、個人間の一般化性を高める。
実験では,SOTA法よりも優れた再建性能を示し,生体情報によるアプローチの有効性と解釈性を強調した。
関連論文リスト
- BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
本稿では,fMRI時系列データから直接表現を学習するBrain Masked Auto-Encoder(BrainMAE)を提案する。
BrainMAEは、4つの異なる下流タスクにおいて、確立されたベースラインメソッドをかなりのマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2024-06-24T19:16:24Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - Psychometry: An Omnifit Model for Image Reconstruction from Human Brain Activity [60.983327742457995]
人間の脳活動から見るイメージを再構築することで、人間とコンピュータのビジョンをBrain-Computer Interfaceを通して橋渡しする。
異なる被験者から得られた機能的磁気共鳴イメージング(fMRI)による画像再構成のための全能モデルであるサイコメトリを考案した。
論文 参考訳(メタデータ) (2024-03-29T07:16:34Z) - NeuroCine: Decoding Vivid Video Sequences from Human Brain Activties [23.893490180665996]
本稿では,fMRIデータを復号化するための新たな二相フレームワークであるNeuroCineを紹介する。
公開されているfMRIデータセットでテストした結果,有望な結果が得られた。
このモデルが既存の脳構造や機能と一致し,その生物学的妥当性と解釈可能性を示すことが示唆された。
論文 参考訳(メタデータ) (2024-02-02T17:34:25Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Metadata-Conditioned Generative Models to Synthesize
Anatomically-Plausible 3D Brain MRIs [12.492451825171408]
本稿では, メタデータ条件付きMRI(例えば, 年齢, 性別別MRI)を合成するための新しい生成モデルであるBrain Synthを提案する。
以上の結果から, 合成MRIの脳領域の半数以上が解剖学的に正確であり, 実際のMRIと合成MRIの差は小さいことが示唆された。
われわれの合成MRIは畳み込みニューラルネットワークのトレーニングを大幅に改善し、加速度的老化効果を同定する。
論文 参考訳(メタデータ) (2023-10-07T00:05:47Z) - MindDiffuser: Controlled Image Reconstruction from Human Brain Activity
with Semantic and Structural Diffusion [7.597218661195779]
我々はMindDiffuserと呼ばれる2段階の画像再構成モデルを提案する。
ステージ1では、VQ-VAE潜在表現とfMRIからデコードされたCLIPテキスト埋め込みが安定拡散される。
ステージ2では、fMRIからデコードされたCLIP視覚特徴を監視情報として利用し、バックパゲーションによりステージ1でデコードされた2つの特徴ベクトルを継続的に調整し、構造情報を整列させる。
論文 参考訳(メタデータ) (2023-08-08T13:28:34Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
我々はfMRIデコーディングと符号化の両方に対処する統合フレームワークを導入する。
本モデルでは、fMRI信号から視覚刺激を同時に回復し、統合された枠組み内の画像から脳活動を予測する。
論文 参考訳(メタデータ) (2023-03-26T14:14:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。