論文の概要: Self-Supervised Inductive Logic Programming
- arxiv url: http://arxiv.org/abs/2507.16405v1
- Date: Tue, 22 Jul 2025 09:57:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:14.055742
- Title: Self-Supervised Inductive Logic Programming
- Title(参考訳): 自己監督型帰納的論理プログラミング
- Authors: Stassa Patsantzis,
- Abstract要約: 正のラベル付きやゼロあるいはそれ以上のラベル付き例から新しい設定で学習する新しいMILアルゴリズムを提案する。
我々はこのアルゴリズムをPokeerと呼ばれる新しいMILシステムでPrologに実装する。
我々はPokerと最先端のMILシステムLouiseを比較し、文脈自由言語とL-System言語の文法を学習する実験を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inductive Logic Programming (ILP) approaches like Meta \-/ Interpretive Learning (MIL) can learn, from few examples, recursive logic programs with invented predicates that generalise well to unseen instances. This ability relies on a background theory and negative examples, both carefully selected with expert knowledge of a learning problem and its solutions. But what if such a problem-specific background theory or negative examples are not available? We formalise this question as a new setting for Self-Supervised ILP and present a new MIL algorithm that learns in the new setting from some positive labelled, and zero or more unlabelled examples, and automatically generates, and labels, new positive and negative examples during learning. We implement this algorithm in Prolog in a new MIL system, called Poker. We compare Poker to state-of-the-art MIL system Louise on experiments learning grammars for Context-Free and L-System languages from labelled, positive example strings, no negative examples, and just the terminal vocabulary of a language, seen in examples, as a first-order background theory. We introduce a new approach for the principled selection of a second-order background theory as a Second Order Definite Normal Form (SONF), sufficiently general to learn all programs in a class, thus removing the need for a backgound theory tailored to a learning task. We find that Poker's performance improves with increasing numbers of automatically generated examples while Louise, bereft of negative examples, over-generalises.
- Abstract(参考訳): Meta \-/Interpretive Learning (MIL)のような帰納的論理プログラミング(ILP)アプローチは、いくつかの例から、発明された述語による再帰的論理プログラムを、目に見えないインスタンスによく一般化することができる。
この能力は背景理論と負の例に依存し、どちらも学習問題とその解に関する専門家の知識で慎重に選択される。
しかし、そのような問題固有の背景理論やネガティブな例が利用できないとしたらどうだろう?
我々は、自己監督型LPの新しい設定としてこの問題を定式化し、新しい設定で学習する新しいMILアルゴリズムを、いくつかの正のラベル付き、ゼロ以上の未ラベルの例から学習し、学習中に新しい正の例と負の例を自動生成し、ラベル付けする。
我々はこのアルゴリズムをPokeerと呼ばれる新しいMILシステムでPrologに実装する。
我々はポーカーと最先端のMILシステムLouiseを比較し、ラベル付き言語から文脈自由言語とL-システム言語の文法を学ぶ実験、正の例列、負の例がなく、一階の背景理論として見られる言語の終端語彙だけを例に挙げる。
本稿では,クラス内のすべてのプログラムを学習するのに十分な汎用性を持つ2次定性正規形式(SONF)として,2次背景理論の原理選択のための新しいアプローチを提案する。
ポーカーのパフォーマンスは、自動生成されたサンプルの数の増加とともに向上し、一方ルイーズは、ネガティブな例の欠落、過剰な一般化を経験する。
関連論文リスト
- "In-Context Learning" or: How I learned to stop worrying and love "Applied Information Retrieval" [9.264121218481133]
In-context Learning (ICL)は、自然言語処理(NLP)の新しいパラダイムとして進化してきた。
ICLは概念的には$k$-NNのような非パラメトリックアプローチに似ている。
トレーニングセットから取得したICLの同様の例は、IRのコレクションから取得したドキュメントのセットに関連している。
論文 参考訳(メタデータ) (2024-05-02T09:25:24Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
論理的推論は、科学、数学、社会に潜在的影響を与える可能性のある人工知能にとって重要なタスクである。
本研究では、LINCと呼ばれるモジュール型ニューロシンボリックプログラミングのようなタスクを再構成する。
我々は,FOLIOとProofWriterのバランスの取れたサブセットに対して,ほぼすべての実験条件下で,3つの異なるモデルに対して顕著な性能向上を観察した。
論文 参考訳(メタデータ) (2023-10-23T17:58:40Z) - Large Language Model-Aware In-Context Learning for Code Generation [75.68709482932903]
大規模言語モデル(LLM)は、コード生成において印象的なコンテキスト内学習(ICL)能力を示している。
コード生成のためのLAIL (LLM-Aware In-context Learning) という新しい学習ベース選択手法を提案する。
論文 参考訳(メタデータ) (2023-10-15T06:12:58Z) - Empower Nested Boolean Logic via Self-Supervised Curriculum Learning [67.46052028752327]
大規模言語モデルを含む事前学習された言語モデルは、多言語論理に直面するランダムセレクタのように振る舞う。
この基本的能力で言語モデルを強化するために,本稿では,新たな自己教師付き学習手法であるtextitCurriculum Logical Reasoning (textscClr) を提案する。
論文 参考訳(メタデータ) (2023-10-09T06:54:02Z) - Finding Support Examples for In-Context Learning [73.90376920653507]
本稿では,この課題を2段階に解決するためのfilter-thEN-Search法であるLENSを提案する。
まず、データセットをフィルタリングして、個別に情報的インコンテキストの例を得る。
そこで本研究では,反復的に改良し,選択したサンプル順列を評価可能な多様性誘導型サンプル探索を提案する。
論文 参考訳(メタデータ) (2023-02-27T06:32:45Z) - Generalisation Through Negation and Predicate Invention [25.944127431156627]
我々は、否定と述語的発明を組み合わせた帰納論理プログラミング(ILP)アプローチを導入する。
我々は,通常の論理プログラムを述語的発明で学習できるNOPIで実装する。
複数の領域に対する実験結果から,本手法は予測精度と学習時間を向上できることが示された。
論文 参考訳(メタデータ) (2023-01-18T16:12:27Z) - Learning Interpretable Temporal Properties from Positive Examples Only [27.929058359327186]
我々は,人間の解釈可能なモデルを用いて,ブラックボックスシステムの時間的挙動を説明する問題を考察する。
我々は決定論的有限オートマトン(DFAs)と線形時間論理(LTL)の基本的な解釈可能なモデルに依存している。
私たちのモチベーションは、特にブラックボックスシステムから否定的な例を観察することは一般的に困難であるということです。
論文 参考訳(メタデータ) (2022-09-06T17:04:09Z) - Learning Symbolic Rules for Reasoning in Quasi-Natural Language [74.96601852906328]
我々は,ルールを手作業で構築することなく,自然言語入力で推論できるルールベースシステムを構築した。
本稿では,形式論理文と自然言語文の両方を表現可能な"Quasi-Natural"言語であるMetaQNLを提案する。
提案手法は,複数の推論ベンチマークにおける最先端の精度を実現する。
論文 参考訳(メタデータ) (2021-11-23T17:49:00Z) - Learning by Examples Based on Multi-level Optimization [12.317568257671427]
我々はLBE(Learning By Examples)と呼ばれる新しい学習手法を提案する。
提案手法では,クエリサンプルに類似したトレーニングサンプルの集合を自動的に検索し,検索したサンプルのクラスラベルを用いてクエリサンプルのラベルを予測する。
様々なベンチマークにおいて,教師付き学習と少数ショット学習の両方において,本手法の有効性を実証する実験を行った。
論文 参考訳(メタデータ) (2021-09-22T16:33:06Z) - Reordering Examples Helps during Priming-based Few-Shot Learning [6.579039107070663]
PERO は 10 個の例から効率よく一般化できることを示す。
提案手法が感情分類,自然言語推論,事実検索のタスクに与える影響を実証する。
論文 参考訳(メタデータ) (2021-06-03T11:02:36Z) - The ILASP system for Inductive Learning of Answer Set Programs [79.41112438865386]
我々のシステムは、通常の規則、選択規則、厳しい制約を含むアンサーセットプログラムを学習する。
まず、ILASPの学習フレームワークとその機能の概要を説明します。
続いて、ILASPシステムの進化を概観する。
論文 参考訳(メタデータ) (2020-05-02T19:04:12Z) - Logical Natural Language Generation from Open-Domain Tables [107.04385677577862]
本稿では,その事実に関連付けられた自然言語文をモデルで生成するタスクを提案する。
提案した論理的 NLG 問題の研究を容易にするために,幅広い論理的・記号的推論を特徴とする既存の TabFact データセットcitechen 2019tabfact を用いる。
新しいタスクは、シーケンス順序と論理順序のミスマッチのため、既存のモノトニック生成フレームワークに課題をもたらす。
論文 参考訳(メタデータ) (2020-04-22T06:03:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。