Symbolic Graph Intelligence: Hypervector Message Passing for Learning Graph-Level Patterns with Tsetlin Machines
- URL: http://arxiv.org/abs/2507.16537v1
- Date: Tue, 22 Jul 2025 12:47:56 GMT
- Title: Symbolic Graph Intelligence: Hypervector Message Passing for Learning Graph-Level Patterns with Tsetlin Machines
- Authors: Christian D. Blakely,
- Abstract summary: We propose a multilayered symbolic framework for general graph classification.<n>Each graph is encoded through structured message passing, where node, edge, and attribute information are bound and bundled into a symbolic hypervector.<n>We validate our method on TUDataset benchmarks, demonstrating competitive accuracy with strong symbolic transparency compared to neural graph models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a multilayered symbolic framework for general graph classification that leverages sparse binary hypervectors and Tsetlin Machines. Each graph is encoded through structured message passing, where node, edge, and attribute information are bound and bundled into a symbolic hypervector. This process preserves the hierarchical semantics of the graph through layered binding from node attributes to edge relations to structural roles resulting in a compact, discrete representation. We also formulate a local interpretability framework which lends itself to a key advantage of our approach being locally interpretable. We validate our method on TUDataset benchmarks, demonstrating competitive accuracy with strong symbolic transparency compared to neural graph models.
Related papers
- Beyond Message Passing: Neural Graph Pattern Machine [50.78679002846741]
We introduce the Neural Graph Pattern Machine (GPM), a novel framework that bypasses message passing by learning directly from graph substructures.<n>GPM efficiently extracts, encodes, and prioritizes task-relevant graph patterns, offering greater expressivity and improved ability to capture long-range dependencies.
arXiv Detail & Related papers (2025-01-30T20:37:47Z) - Message Detouring: A Simple Yet Effective Cycle Representation for
Expressive Graph Learning [4.085624738017079]
We introduce the concept of textitmessage detouring to hierarchically characterize cycle representation throughout the entire graph.
Message detouring can significantly outperform current counterpart approaches on various benchmark datasets.
arXiv Detail & Related papers (2024-02-12T22:06:37Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Dual Contrastive Attributed Graph Clustering Network [6.796682703663566]
We propose a generic framework called Dual Contrastive Attributed Graph Clustering Network (DCAGC)
In DCAGC, by leveraging Neighborhood Contrast Module, the similarity of the neighbor nodes will be maximized and the quality of the node representation will be improved.
All the modules of DCAGC are trained and optimized in a unified framework, so the learned node representation contains clustering-oriented messages.
arXiv Detail & Related papers (2022-06-16T03:17:01Z) - Embedding Graphs on Grassmann Manifold [31.42901131602713]
This paper develops a new graph representation learning scheme, namely EGG, which embeds approximated second-order graph characteristics into a Grassmann manifold.
The effectiveness of EGG is demonstrated using both clustering and classification tasks at the node level and graph level.
arXiv Detail & Related papers (2022-05-30T12:56:24Z) - Multi-task Self-distillation for Graph-based Semi-Supervised Learning [6.277952154365413]
We propose a multi-task self-distillation framework that injects self-supervised learning and self-distillation into graph convolutional networks.
First, we formulate a self-supervision pipeline based on pre-text tasks to capture different levels of similarities in graphs.
Second, self-distillation uses soft labels of the model itself as additional supervision.
arXiv Detail & Related papers (2021-12-02T12:43:41Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
We propose a novel framework called Squeeze Reasoning.
Instead of propagating information on the spatial map, we first learn to squeeze the input feature into a channel-wise global vector.
We show that our approach can be modularized as an end-to-end trained block and can be easily plugged into existing networks.
arXiv Detail & Related papers (2020-11-06T12:17:01Z) - GripNet: Graph Information Propagation on Supergraph for Heterogeneous
Graphs [6.672528545175732]
This paper proposes a flexible and efficient Graph information propagation Network (GripNet) framework.
Specifically, we introduce a new supergraph data structure consisting of supervertices and superedges.
We construct multiple large-scale graphs and evaluate GripNet against competing methods to show its superiority in link prediction, node classification, and data integration.
arXiv Detail & Related papers (2020-10-29T19:58:43Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
We re-interpret node aggregation from the perspective of kernel weighting.
We present a framework to consider feature similarity in an aggregation scheme.
We propose feature aggregation as the composition of the original neighbor-based kernel and a learnable kernel to encode feature similarities in a feature space.
arXiv Detail & Related papers (2020-05-16T04:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.