Multi-task Self-distillation for Graph-based Semi-Supervised Learning
- URL: http://arxiv.org/abs/2112.01174v1
- Date: Thu, 2 Dec 2021 12:43:41 GMT
- Title: Multi-task Self-distillation for Graph-based Semi-Supervised Learning
- Authors: Yating Ren and Junzhong Ji and Lingfeng Niu and Minglong Lei
- Abstract summary: We propose a multi-task self-distillation framework that injects self-supervised learning and self-distillation into graph convolutional networks.
First, we formulate a self-supervision pipeline based on pre-text tasks to capture different levels of similarities in graphs.
Second, self-distillation uses soft labels of the model itself as additional supervision.
- Score: 6.277952154365413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph convolutional networks have made great progress in graph-based
semi-supervised learning. Existing methods mainly assume that nodes connected
by graph edges are prone to have similar attributes and labels, so that the
features smoothed by local graph structures can reveal the class similarities.
However, there often exist mismatches between graph structures and labels in
many real-world scenarios, where the structures may propagate misleading
features or labels that eventually affect the model performance. In this paper,
we propose a multi-task self-distillation framework that injects
self-supervised learning and self-distillation into graph convolutional
networks to separately address the mismatch problem from the structure side and
the label side. First, we formulate a self-supervision pipeline based on
pre-text tasks to capture different levels of similarities in graphs. The
feature extraction process is encouraged to capture more complex proximity by
jointly optimizing the pre-text task and the target task. Consequently, the
local feature aggregations are improved from the structure side. Second,
self-distillation uses soft labels of the model itself as additional
supervision, which has similar effects as label smoothing. The knowledge from
the classification pipeline and the self-supervision pipeline is collectively
distilled to improve the generalization ability of the model from the label
side. Experiment results show that the proposed method obtains remarkable
performance gains under several classic graph convolutional architectures.
Related papers
- Contrastive Learning for Non-Local Graphs with Multi-Resolution
Structural Views [1.4445779250002606]
We propose a novel multiview contrastive learning approach that integrates diffusion filters on graphs.
By incorporating multiple graph views as augmentations, our method captures the structural equivalence in heterophilic graphs.
arXiv Detail & Related papers (2023-08-19T17:42:02Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
We investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph.
The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge.
We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions.
arXiv Detail & Related papers (2023-02-27T22:56:06Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - Self-supervised Graph-level Representation Learning with Local and
Global Structure [71.45196938842608]
We propose a unified framework called Local-instance and Global-semantic Learning (GraphLoG) for self-supervised whole-graph representation learning.
Besides preserving the local similarities, GraphLoG introduces the hierarchical prototypes to capture the global semantic clusters.
An efficient online expectation-maximization (EM) algorithm is further developed for learning the model.
arXiv Detail & Related papers (2021-06-08T05:25:38Z) - Hierarchical Adaptive Pooling by Capturing High-order Dependency for
Graph Representation Learning [18.423192209359158]
Graph neural networks (GNN) have been proven to be mature enough for handling graph-structured data on node-level graph representation learning tasks.
This paper proposes a hierarchical graph-level representation learning framework, which is adaptively sensitive to graph structures.
arXiv Detail & Related papers (2021-04-13T06:22:24Z) - Sub-graph Contrast for Scalable Self-Supervised Graph Representation
Learning [21.0019144298605]
Existing graph neural networks fed with the complete graph data are not scalable due to limited computation and memory costs.
textscSubg-Con is proposed by utilizing the strong correlation between central nodes and their sampled subgraphs to capture regional structure information.
Compared with existing graph representation learning approaches, textscSubg-Con has prominent performance advantages in weaker supervision requirements, model learning scalability, and parallelization.
arXiv Detail & Related papers (2020-09-22T01:58:19Z) - Affinity Graph Supervision for Visual Recognition [35.35959846458965]
We propose a principled method to supervise the learning of weights in affinity graphs.
Our affinity supervision improves relationship recovery between objects, even without manually annotated relationship labels.
We show that affinity learning can also be applied to graphs built from mini-batches, for neural network training.
arXiv Detail & Related papers (2020-03-19T23:52:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.