Data-Driven Adaptive Gradient Recovery for Unstructured Finite Volume Computations
- URL: http://arxiv.org/abs/2507.16571v1
- Date: Tue, 22 Jul 2025 13:23:57 GMT
- Title: Data-Driven Adaptive Gradient Recovery for Unstructured Finite Volume Computations
- Authors: G. de Romémont, F. Renac, F. Chinesta, J. Nunez, D. Gueyffier,
- Abstract summary: We present a novel data-driven approach for enhancing gradient reconstruction in unstructured finite volume methods for hyperbolic conservation laws.<n>Our approach extends previous structured-grid methodologies to unstructured meshes through a modified DeepONet architecture.<n>The proposed algorithm is faster and more accurate than the traditional second-order finite volume solver.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a novel data-driven approach for enhancing gradient reconstruction in unstructured finite volume methods for hyperbolic conservation laws, specifically for the 2D Euler equations. Our approach extends previous structured-grid methodologies to unstructured meshes through a modified DeepONet architecture that incorporates local geometry in the neural network. The architecture employs local mesh topology to ensure rotation invariance, while also ensuring first-order constraint on the learned operator. The training methodology incorporates physics-informed regularization through entropy penalization, total variation diminishing penalization, and parameter regularization to ensure physically consistent solutions, particularly in shock-dominated regions. The model is trained on high-fidelity datasets solutions derived from sine waves and randomized piecewise constant initial conditions with periodic boundary conditions, enabling robust generalization to complex flow configurations or geometries. Validation test cases from the literature, including challenging geometry configuration, demonstrates substantial improvements in accuracy compared to traditional second-order finite volume schemes. The method achieves gains of 20-60% in solution accuracy while enhancing computational efficiency. A convergence study has been conveyed and reveal improved mesh convergence rates compared to the conventional solver. The proposed algorithm is faster and more accurate than the traditional second-order finite volume solver, enabling high-fidelity simulations on coarser grids while preserving the stability and conservation properties essential for hyperbolic conservation laws. This work is a part of a new generation of solvers that are built by combining Machine-Learning (ML) tools with traditional numerical schemes, all while ensuring physical constraint on the results.
Related papers
- Self-Supervised Coarsening of Unstructured Grid with Automatic Differentiation [55.88862563823878]
In this work, we present an original algorithm to coarsen an unstructured grid based on the concepts of differentiable physics.<n>We demonstrate performance of the algorithm on two PDEs: a linear equation which governs slightly compressible fluid flow in porous media and the wave equation.<n>Our results show that in the considered scenarios, we reduced the number of grid points up to 10 times while preserving the modeled variable dynamics in the points of interest.
arXiv Detail & Related papers (2025-07-24T11:02:13Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.<n>Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.<n>Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - A data-driven learned discretization approach in finite volume schemes for hyperbolic conservation laws and varying boundary conditions [1.4999444543328293]
We present a data-driven finite volume method for solving 1D and 2D hyperbolic partial differential equations.<n>New ingredients guarantee computational stability, preserve the accuracy of fine-grid solutions, and enhance overall performance.
arXiv Detail & Related papers (2024-12-10T14:18:30Z) - A Model-Constrained Discontinuous Galerkin Network (DGNet) for Compressible Euler Equations with Out-of-Distribution Generalization [0.0]
We develop a model-constrained discontinuous Galerkin Network (DGNet) approach.<n>The core of DGNet is the synergy of several key strategies.<n>We present comprehensive numerical results for 1D and 2D compressible Euler equation problems.
arXiv Detail & Related papers (2024-09-27T01:13:38Z) - A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
We propose a domain-decomposition-based deep learning (DL) framework, named CoMLSim, for accurately modeling unsteady and nonlinear partial differential equations (PDEs)<n>The framework consists of two key components: (a) a convolutional neural network (CNN)-based autoencoder architecture and (b) an autoregressive model composed of fully connected layers.
arXiv Detail & Related papers (2024-08-26T17:50:47Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
We propose a novel optimization framework for the hyperspectral deconvolution problem, called DeepMix.<n>It consists of three distinct modules, namely, a data consistency module, a module that enforces the effect of the handcrafted regularizers, and a denoising module.<n>This work proposes a context aware denoising module designed to sustain the advancements achieved by the cooperative efforts of the other modules.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - An Adaptive and Stability-Promoting Layerwise Training Approach for Sparse Deep Neural Network Architecture [0.0]
This work presents a two-stage adaptive framework for developing deep neural network (DNN) architectures that generalize well for a given training data set.
In the first stage, a layerwise training approach is adopted where a new layer is added each time and trained independently by freezing parameters in the previous layers.
We introduce a epsilon-delta stability-promoting concept as a desirable property for a learning algorithm and show that employing manifold regularization yields a epsilon-delta stability-promoting algorithm.
arXiv Detail & Related papers (2022-11-13T09:51:16Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - De-homogenization using Convolutional Neural Networks [1.0323063834827415]
This paper presents a deep learning-based de-homogenization method for structural compliance minimization.
For an appropriate choice of parameters, the de-homogenized designs perform within $7-25%$ of the homogenization-based solution.
arXiv Detail & Related papers (2021-05-10T09:50:06Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.