A2Mamba: Attention-augmented State Space Models for Visual Recognition
- URL: http://arxiv.org/abs/2507.16624v1
- Date: Tue, 22 Jul 2025 14:17:08 GMT
- Title: A2Mamba: Attention-augmented State Space Models for Visual Recognition
- Authors: Meng Lou, Yunxiang Fu, Yizhou Yu,
- Abstract summary: We propose A2Mamba, a powerful Transformer-Mamba hybrid network architecture.<n>A key step of A2SSM performs a variant of cross-attention by spatially aggregating the SSM's hidden states.<n>Our A2Mamba outperforms all previous ConvNet-, Transformer-, and Mamba-based architectures in visual recognition tasks.
- Score: 45.68176825375723
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformers and Mamba, initially invented for natural language processing, have inspired backbone architectures for visual recognition. Recent studies integrated Local Attention Transformers with Mamba to capture both local details and global contexts. Despite competitive performance, these methods are limited to simple stacking of Transformer and Mamba layers without any interaction mechanism between them. Thus, deep integration between Transformer and Mamba layers remains an open problem. We address this problem by proposing A2Mamba, a powerful Transformer-Mamba hybrid network architecture, featuring a new token mixer termed Multi-scale Attention-augmented State Space Model (MASS), where multi-scale attention maps are integrated into an attention-augmented SSM (A2SSM). A key step of A2SSM performs a variant of cross-attention by spatially aggregating the SSM's hidden states using the multi-scale attention maps, which enhances spatial dependencies pertaining to a two-dimensional space while improving the dynamic modeling capabilities of SSMs. Our A2Mamba outperforms all previous ConvNet-, Transformer-, and Mamba-based architectures in visual recognition tasks. For instance, A2Mamba-L achieves an impressive 86.1% top-1 accuracy on ImageNet-1K. In semantic segmentation, A2Mamba-B exceeds CAFormer-S36 by 2.5% in mIoU, while exhibiting higher efficiency. In object detection and instance segmentation with Cascade Mask R-CNN, A2Mamba-S surpasses MambaVision-B by 1.2%/0.9% in AP^b/AP^m, while having 40% less parameters. Code is publicly available at https://github.com/LMMMEng/A2Mamba.
Related papers
- MambaOutRS: A Hybrid CNN-Fourier Architecture for Remote Sensing Image Classification [4.14360329494344]
We introduce MambaOutRS, a novel hybrid convolutional architecture for remote sensing image classification.<n>MambaOutRS builds upon stacked Gated CNN blocks for local feature extraction and introduces a novel Fourier Filter Gate (FFG) module.
arXiv Detail & Related papers (2025-06-24T12:20:11Z) - TransMamba: Fast Universal Architecture Adaption from Transformers to Mamba [88.31117598044725]
We explore cross-architecture training to transfer the ready knowledge in existing Transformer models to alternative architecture Mamba, termed TransMamba.<n>Our approach employs a two-stage strategy to expedite training new Mamba models, ensuring effectiveness in across uni-modal and cross-modal tasks.<n>For cross-modal learning, we propose a cross-Mamba module that integrates language awareness into Mamba's visual features, enhancing the cross-modal interaction capabilities of Mamba architecture.
arXiv Detail & Related papers (2025-02-21T01:22:01Z) - MatIR: A Hybrid Mamba-Transformer Image Restoration Model [95.17418386046054]
We propose a Mamba-Transformer hybrid image restoration model called MatIR.<n>MatIR cross-cycles the blocks of the Transformer layer and the Mamba layer to extract features.<n>In the Mamba module, we introduce the Image Inpainting State Space (IRSS) module, which traverses along four scan paths.
arXiv Detail & Related papers (2025-01-30T14:55:40Z) - Detail Matters: Mamba-Inspired Joint Unfolding Network for Snapshot Spectral Compressive Imaging [40.80197280147993]
We propose a Mamba-inspired Joint Unfolding Network (MiJUN) to overcome the inherent nonlinear and ill-posed characteristics of HSI reconstruction.<n>We introduce an accelerated unfolding network scheme, which reduces the reliance on initial optimization stages.<n>We refine the scanning strategy with Mamba by integrating the tensor mode-$k$ unfolding into the Mamba network.
arXiv Detail & Related papers (2025-01-02T13:56:23Z) - 2DMamba: Efficient State Space Model for Image Representation with Applications on Giga-Pixel Whole Slide Image Classification [40.10133518650528]
We propose 2DMamba, a novel 2D selective SSM framework that incorporates the 2D spatial structure of images into Mamba.<n>Experiments on 10 public datasets for WSI classification and survival analysis show that 2DMamba improves up to 2.48% in AUC, 3.11% in F1 score, 2.47% in accuracy and 5.52% in C-index.
arXiv Detail & Related papers (2024-12-01T05:42:58Z) - MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs.
We propose the MobileMamba framework, which balances efficiency and performance.
MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods.
arXiv Detail & Related papers (2024-11-24T18:01:05Z) - V2M: Visual 2-Dimensional Mamba for Image Representation Learning [68.51380287151927]
Mamba has garnered widespread attention due to its flexible design and efficient hardware performance to process 1D sequences.
Recent studies have attempted to apply Mamba to the visual domain by flattening 2D images into patches and then regarding them as a 1D sequence.
We propose a Visual 2-Dimensional Mamba model as a complete solution, which directly processes image tokens in the 2D space.
arXiv Detail & Related papers (2024-10-14T11:11:06Z) - Hi-Mamba: Hierarchical Mamba for Efficient Image Super-Resolution [42.259283231048954]
State Space Models (SSM) have shown strong representation ability in modeling long-range dependency with linear complexity.
We propose a novel Hierarchical Mamba network, namely, Hi-Mamba, for image super-resolution (SR)
arXiv Detail & Related papers (2024-10-14T04:15:04Z) - Sparse Mamba: Introducing Controllability, Observability, And Stability To Structural State Space Models [2.6353853440763118]
We introduce the concept of controllability and observability to the original Mamba SSM's architecture in our proposed S-Mamba.
We demonstrate an improvement in perplexity by 5% and a decrease in training time by 3% after reinforcing controllability and observability on the original Mamba architecture.
arXiv Detail & Related papers (2024-08-31T23:25:12Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
We propose a novel hybrid Mamba-Transformer backbone, MambaVision, specifically tailored for vision applications.<n>We show that equipping the Mamba architecture with self-attention blocks in the final layers greatly improves its capacity to capture long-range spatial dependencies.<n>For classification on the ImageNet-1K dataset, MambaVision variants achieve state-of-the-art (SOTA) performance in terms of both Top-1 accuracy and throughput.
arXiv Detail & Related papers (2024-07-10T23:02:45Z) - MambaUIE&SR: Unraveling the Ocean's Secrets with Only 2.8 GFLOPs [1.7648680700685022]
Underwater Image Enhancement (UIE) techniques aim to address the problem of underwater image degradation due to light absorption and scattering.
Recent years, both Convolution Neural Network (CNN)-based and Transformer-based methods have been widely explored.
MambaUIE is able to efficiently synthesize global and local information and maintains a very small number of parameters with high accuracy.
arXiv Detail & Related papers (2024-04-22T05:12:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.