論文の概要: Synthetic Data Matters: Re-training with Geo-typical Synthetic Labels for Building Detection
- arxiv url: http://arxiv.org/abs/2507.16657v1
- Date: Tue, 22 Jul 2025 14:53:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:14.163332
- Title: Synthetic Data Matters: Re-training with Geo-typical Synthetic Labels for Building Detection
- Title(参考訳): 合成データ: 建物検出のためのジオタイプ合成ラベルによる再学習
- Authors: Shuang Song, Yang Tang, Rongjun Qin,
- Abstract要約: 対象地域の都市配置に合わせた合成データを用いて,テスト時に再学習モデルを提案する。
対象地域の都市構造を忠実に再現する地球型合成データを生成する。
実験では、ドメインギャップに応じて、パフォーマンスが大幅に向上し、中央値の12%が改善された。
- 参考スコア(独自算出の注目度): 13.550020274133866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has significantly advanced building segmentation in remote sensing, yet models struggle to generalize on data of diverse geographic regions due to variations in city layouts and the distribution of building types, sizes and locations. However, the amount of time-consuming annotated data for capturing worldwide diversity may never catch up with the demands of increasingly data-hungry models. Thus, we propose a novel approach: re-training models at test time using synthetic data tailored to the target region's city layout. This method generates geo-typical synthetic data that closely replicates the urban structure of a target area by leveraging geospatial data such as street network from OpenStreetMap. Using procedural modeling and physics-based rendering, very high-resolution synthetic images are created, incorporating domain randomization in building shapes, materials, and environmental illumination. This enables the generation of virtually unlimited training samples that maintain the essential characteristics of the target environment. To overcome synthetic-to-real domain gaps, our approach integrates geo-typical data into an adversarial domain adaptation framework for building segmentation. Experiments demonstrate significant performance enhancements, with median improvements of up to 12%, depending on the domain gap. This scalable and cost-effective method blends partial geographic knowledge with synthetic imagery, providing a promising solution to the "model collapse" issue in purely synthetic datasets. It offers a practical pathway to improving generalization in remote sensing building segmentation without extensive real-world annotations.
- Abstract(参考訳): 深層学習はリモートセンシングにおけるビルのセグメンテーションを著しく進歩させてきたが、都市配置の変化や、建物の種類、大きさ、場所の分布などにより、様々な地域のデータに基づく一般化に苦慮している。
しかし、世界中の多様性を捉えるのに時間を要する注釈付きデータの量は、データハングリーモデルの需要に追いつくことはないかもしれない。
そこで本稿では,対象地域の都市レイアウトに合わせた合成データを用いて,テスト時にモデルを再学習する手法を提案する。
本手法は,OpenStreetMapの街路網などの地理空間データを活用することにより,対象地域の都市構造を忠実に再現する地球型合成データを生成する。
手続き的モデリングと物理に基づくレンダリングを用いて、建築形状、材料、環境照明にドメインランダム化を取り入れた、非常に高解像度の合成画像を生成する。
これにより、ターゲット環境の本質的な特性を維持する、事実上無制限なトレーニングサンプルの生成が可能になる。
合成と実の領域ギャップを克服するため,本手法では,ジオタイプデータと対角的領域適応フレームワークを統合し,セグメンテーションを構築する。
実験では、ドメインギャップに応じて、パフォーマンスが大幅に向上し、中央値の12%が改善された。
このスケーラブルで費用対効果の高い方法は、部分的な地理的知識と合成画像を組み合わせることで、純粋に合成データセットにおける「モデル崩壊」問題に対する有望な解決策を提供する。
大規模な実世界のアノテーションを使わずに、リモートセンシングビルディングセグメンテーションの一般化を改善するための実践的な経路を提供する。
関連論文リスト
- Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
本稿では, 複雑度の異なる3つの生成モデルを用いて, 悪意ネットワークトラフィックを合成する手法を提案する。
提案手法は,数値データをテキストに変換し,言語モデリングタスクとして再フレーミングする。
提案手法は,高忠実度合成データの生成において,最先端の生成モデルを超えている。
論文 参考訳(メタデータ) (2024-11-04T09:51:10Z) - Learning from Synthetic Data for Visual Grounding [55.21937116752679]
そこで本研究では,SynGroundが市販のビジョン・アンド・ランゲージモデルのローカライズ能力を向上できることを示す。
SynGroundで生成されたデータは、事前訓練されたALBEFモデルとBLIPモデルのポインティングゲーム精度をそれぞれ4.81%、絶対パーセンテージポイント17.11%向上させる。
論文 参考訳(メタデータ) (2024-03-20T17:59:43Z) - SARN: Structurally-Aware Recurrent Network for Spatio-Temporal Disaggregation [8.636014676778682]
オープンデータは、通常プライバシーポリシーに従うために、しばしば空間的に集約される。しかし、粗い、異質な集約は、下流のAI/MLシステムに対する一貫性のある学習と統合を複雑にする。
本稿では,空間的注意層をGRU(Gated Recurrent Unit)モデルに統合したSARN(Structurely-Aware Recurrent Network)を提案する。
履歴学習データに制限のあるシナリオでは、ある都市変数に事前学習したモデルを、数百のサンプルのみを用いて、他の都市変数に対して微調整できることを示す。
論文 参考訳(メタデータ) (2023-06-09T21:01:29Z) - Domain Adaptation of Synthetic Driving Datasets for Real-World
Autonomous Driving [0.11470070927586014]
特定のコンピュータビジョンタスクのための合成データで訓練されたネットワークは、実世界のデータでテストすると大幅に劣化する。
本稿では,このような手法を改良するための新しい手法を提案し,評価する。
本稿では,このペア選択にセマンティック・インスペクションを効果的に組み込む手法を提案し,モデルの性能向上に寄与する。
論文 参考訳(メタデータ) (2023-02-08T15:51:54Z) - Synthetic-to-Real Domain Generalized Semantic Segmentation for 3D Indoor
Point Clouds [69.64240235315864]
本稿では,本課題に対して,合成-実領域一般化設定を提案する。
合成と実世界のポイントクラウドデータのドメインギャップは、主に異なるレイアウトとポイントパターンにあります。
CINMixとMulti-prototypeの両方が分配ギャップを狭めることを示した。
論文 参考訳(メタデータ) (2022-12-09T05:07:43Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
フェデレートラーニングは、プライバシを考慮したデータ共有を必要とせずに、さまざまなクライアントでモデルをトレーニングすることを目的としている。
本研究では,データの不均一性がグローバル集約モデルの表現に与える影響について検討する。
フェデレーション学習における次元的崩壊を効果的に緩和する新しい手法である sc FedDecorr を提案する。
論文 参考訳(メタデータ) (2022-10-01T09:04:17Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Robust Self-Tuning Data Association for Geo-Referencing Using Lane Markings [44.4879068879732]
本稿では,データアソシエーションにおけるあいまいさを解消するための完全なパイプラインを提案する。
その中核は、測定のエントロピーに応じて探索領域に適応する堅牢な自己調整データアソシエーションである。
ドイツ・カールスルーエ市周辺の都市・農村のシナリオを実データとして評価した。
論文 参考訳(メタデータ) (2022-07-28T12:29:39Z) - PetroGAN: A novel GAN-based approach to generate realistic, label-free
petrographic datasets [0.0]
本研究では,GAN(Generative Adversarial Network)に基づく新しいディープラーニングフレームワークを開発し,最初のリアルな合成石油写真データセットを作成する。
トレーニングデータセットは、平面光と横偏光の両方で岩石の薄い部分の10070枚の画像で構成されている。
このアルゴリズムは264のGPU時間で訓練され、ペトログラフ画像のFr'echet Inception Distance(FID)スコアが12.49に達した。
論文 参考訳(メタデータ) (2022-04-07T01:55:53Z) - Style-Hallucinated Dual Consistency Learning for Domain Generalized
Semantic Segmentation [117.3856882511919]
本稿では、ドメインシフトを処理するためのStyle-HAllucinated Dual consistEncy Learning(SHADE)フレームワークを提案する。
SHADEは3つの実世界のデータセットの平均mIoUに対して5.07%と8.35%の精度で改善し、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2022-04-06T02:49:06Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - CrossLoc: Scalable Aerial Localization Assisted by Multimodal Synthetic
Data [2.554905387213586]
本稿では,合成データを用いて実世界のカメラポーズを推定する視覚的位置決めシステムを提案する。
データ不足を緩和するために,汎用な合成データ生成ツールTOPO-DataGenを導入する。
また、ポーズ推定のためのクロスモーダル視覚表現学習手法であるCrossLocを導入する。
論文 参考訳(メタデータ) (2021-12-16T18:05:48Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
本稿では, 生物系統学から得られた都市形態の数値分類法を提案する。
我々は同質の都市組織タイプを導出し、それら間の全体形態的類似性を決定することにより、都市形態の階層的分類を生成する。
フレーミングとプレゼンを行った後、プラハとアムステルダムの2都市でテストを行った。
論文 参考訳(メタデータ) (2021-04-30T12:47:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。