Many-Body Physics from Spin-Phonon Coupling in Rydberg Atom Arrays
- URL: http://arxiv.org/abs/2507.16751v1
- Date: Tue, 22 Jul 2025 16:41:15 GMT
- Title: Many-Body Physics from Spin-Phonon Coupling in Rydberg Atom Arrays
- Authors: Shuo Zhang, Langxuan Chen, Pengfei Zhang,
- Abstract summary: We investigate the consequences of incorporating atomic vibrations in optical tweezers, which give rise to spin-phonon coupling.<n>For systems in thermal equilibrium, we find that this coupling leads to a new symmetry-breaking phase in the weak driving limit.<n>Our results are readily testable in state-of-the-art Rydberg atom array experiments.
- Score: 9.444751606547634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of quantum science and technology has established Rydberg atom arrays as a premier platform for exploring quantum many-body physics with exceptional precision and controllability. Traditionally, each atom is modeled as a spin degree of freedom with its spatial motion effectively frozen. This simplification has facilitated the discovery of a rich variety of novel equilibrium and non-equilibrium phases, including $\mathbb{Z}_{\text{N}}$ symmetry-breaking orders and quantum scars. In this work, we investigate the consequences of incorporating atomic vibrations in optical tweezers, which give rise to spin-phonon coupling. For systems in thermal equilibrium, we find that this coupling leads to a new symmetry-breaking phase in the weak driving limit, as a result of induced three-spin interactions. Furthermore, we show that the violation of quantum thermalization in $\mathbb{Z}_2$-ordered states is suppressed when spin-phonon coupling is introduced. Our results are readily testable in state-of-the-art Rydberg atom array experiments.
Related papers
- High-fidelity entanglement and coherent multi-qubit mapping in an atom array [34.82692226532414]
We show the creation and coherent mapping of entangled quantum states across multiple qubits in Ytterbium-171 tweezer arrays.<n>Results establish a versatile architecture that advances multiple fields of quantum information science while also establishing bridges between them.
arXiv Detail & Related papers (2025-06-16T15:58:53Z) - Electrically tunable quantum interference of atomic spins on surfaces [43.73138793116028]
We demonstrate electrical control of quantum interference using atomic spins on an insulating film in a scanning tunneling microscope.<n>We modulate the atomically-confined magnetic interaction between the probe tip and surface atoms with a strong electric field, and drive the spin state rapidly through the energy-level anticrossing.<n>Results open new avenues for all-electrical quantum manipulation in spin-based quantum processors.
arXiv Detail & Related papers (2025-06-01T14:28:36Z) - Harnessing Chiral Spin States in Molecular Nanomagnets for Quantum Technologies [44.1973928137492]
We show that chiral qubits naturally suppress always-on interactions that can not be switched off in weakly coupled qubits.<n>Our findings establish spin chirality engineering as a promising strategy for mitigating always-on interaction in entangling two chiral qubits in molecular quantum technologies.
arXiv Detail & Related papers (2025-01-21T08:23:12Z) - Spin Squeezing with Magnetic Dipoles [37.93140485169168]
Entanglement can improve the measurement precision of quantum sensors beyond the shot noise limit.<n>We take advantage of the magnetic dipole-dipole interaction native to most neutral atoms to realize spin-squeezed states.<n>We achieve 7.1 dB of metrologically useful squeezing using the finite-range spin exchange interactions in an erbium quantum gas microscope.
arXiv Detail & Related papers (2024-11-11T18:42:13Z) - Novel ground states and emergent quantum many-body scars in a two-species Rydberg atom array [9.501699961650854]
Rydberg atom array has been established as one appealing platform for quantum simulation and quantum computation.
Recent development of trapping and controlling two-species atoms using optical tweezer arrays has brought more complex interactions.
We find some novel quantum states that cannot exist in traditional cold-atom platforms.
arXiv Detail & Related papers (2024-08-28T17:36:10Z) - Strong Spin-Motion Coupling in the Ultrafast Dynamics of Rydberg Atoms [0.0]
We show a strong spin-motion coupling emerging from the large variation of the interaction potential over the wavefunction spread.
We propose a novel approach to tune arbitrarily the strength of the spin-motion coupling relative to the motional energy scale set by trapping potentials.
arXiv Detail & Related papers (2023-11-27T07:04:02Z) - A high-flux source system for matter-wave interferometry exploiting
tunable interactions [33.92525320044496]
Atom interferometers allow determining inertial effects to high accuracy.
Here we report on a high-flux source of ultra-cold atoms with free expansion rates near the Heisenberg limit directly upon release from the trap.
arXiv Detail & Related papers (2023-07-13T14:10:53Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Scalable spin squeezing in a dipolar Rydberg atom array [2.392520546501394]
We show how to enhance the precision of measurements beyond the standard quantum limit.
To do so, one can reshape the quantum projection noise -- a strategy known as squeezing.
We present two independent refinements: first, using a multistep spin-squeezing protocol allows us to further enhance the squeezing by approximately 1 dB, and second, leveraging Floquet engineering to realize Heisenberg interactions.
arXiv Detail & Related papers (2023-03-14T16:35:17Z) - Scalable Spin Squeezing from Finite Temperature Easy-plane Magnetism [26.584014467399378]
We conjecture that any Hamiltonian exhibiting finite temperature, easy-plane ferromagnetism can be used to generate scalable spin squeezing.
Our results provide insights into the landscape of Hamiltonians that can be used to generate metrologically useful quantum states.
arXiv Detail & Related papers (2023-01-23T18:59:59Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Motional decoherence in ultracold Rydberg atom quantum simulators of
spin models [8.112441746615366]
We show that spin-motion coupling indeed leads to decoherence in qualitative, and often quantitative, agreement with the experimental data.
This decoherence will be an important factor to account for in future experiments with Rydberg atoms in optical lattices and microtrap arrays.
arXiv Detail & Related papers (2022-01-20T21:42:50Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model.
We show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array.
arXiv Detail & Related papers (2021-03-15T09:45:02Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.