Enhancing Lung Disease Diagnosis via Semi-Supervised Machine Learning
- URL: http://arxiv.org/abs/2507.16845v1
- Date: Sun, 20 Jul 2025 19:10:24 GMT
- Title: Enhancing Lung Disease Diagnosis via Semi-Supervised Machine Learning
- Authors: Xiaoran Xua, In-Ho Rab, Ravi Sankarc,
- Abstract summary: Lung diseases, including lung cancer and COPD, are significant health concerns globally.<n>This study investigates the use of semi supervised learning methods for lung sound signal detection using a model combination of MFCC+CNN.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Lung diseases, including lung cancer and COPD, are significant health concerns globally. Traditional diagnostic methods can be costly, time-consuming, and invasive. This study investigates the use of semi supervised learning methods for lung sound signal detection using a model combination of MFCC+CNN. By introducing semi supervised learning modules such as Mix Match, Co-Refinement, and Co Refurbishing, we aim to enhance the detection performance while reducing dependence on manual annotations. With the add-on semi-supervised modules, the accuracy rate of the MFCC+CNN model is 92.9%, an increase of 3.8% to the baseline model. The research contributes to the field of lung disease sound detection by addressing challenges such as individual differences, feature insufficient labeled data.
Related papers
- CPLOYO: A Pulmonary Nodule Detection Model with Multi-Scale Feature Fusion and Nonlinear Feature Learning [8.128072264076822]
Multi-type detection contributes to improving the overall lung cancer detection rate and enhancing the cure rate.<n>To achieve high sensitivity in nodule detection, targeted improvements were made to the YOLOv8 model.<n>The C2f_RepViTCAMF module was introduced to augment the C2f module in the backbone.<n>The MSCAF module was incorporated to reconstruct the feature fusion section of the model.
arXiv Detail & Related papers (2025-03-13T04:51:57Z) - Advanced Lung Nodule Segmentation and Classification for Early Detection of Lung Cancer using SAM and Transfer Learning [0.0]
This study introduces an innovative approach to lung nodule segmentation by utilizing the Segment Anything Model (SAM) combined with transfer learning techniques.<n>The proposed method leverages Bounding Box prompts and a vision transformer model to enhance segmentation performance, achieving high accuracy, Dice Similarity Coefficient (DSC) and Intersection over Union (IoU) metrics.<n>The findings demonstrate the proposed model effectiveness in precisely segmenting lung nodules from CT scans, underscoring its potential to advance early detection and improve patient care outcomes in lung cancer diagnosis.
arXiv Detail & Related papers (2024-12-31T18:21:57Z) - Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
Lung cancer ranks as one of the leading causes of cancer diagnosis and is the foremost cause of cancer-related mortality worldwide.
The segmentation of lung nodules plays a critical role in aiding physicians in distinguishing between malignant and benign lesions.
We introduce a novel model for segmenting lung nodules in computed tomography (CT) images, leveraging a deep learning framework that integrates segmentation and classification processes.
arXiv Detail & Related papers (2024-10-26T11:58:12Z) - Multi-Task Learning for Lung sound & Lung disease classification [0.0]
A novel approach using multi-task learning (MTL) for the simultaneous classification of lung sounds and lung diseases is proposed.
Our proposed model leverages four different deep learning models such as 2D CNN, ResNet50, MobileNet and Densenet to extract relevant features from the lung sound recordings.
The MTL for MobileNet model performed better than the other models considered, with an accuracy of74% for lung sound analysis and 91% for lung diseases classification.
arXiv Detail & Related papers (2024-04-05T06:15:58Z) - MEDPSeg: Hierarchical polymorphic multitask learning for the segmentation of ground-glass opacities, consolidation, and pulmonary structures on computed tomography [37.119000111386924]
MEDPSeg learns from heterogeneous chest CT targets through hierarchical polymorphic multitask learning (HPML)
We show PML enabling new state-of-the-art performance for GGO and consolidation segmentation tasks.
In addition, MEDPSeg simultaneously performs segmentation of the lung parenchyma, airways, pulmonary artery, and lung lesions, all in a single forward prediction.
arXiv Detail & Related papers (2023-12-04T21:46:39Z) - Automatic segmentation of lung findings in CT and application to Long
COVID [38.69538648742266]
S-MEDSeg is a deep learning based approach for accurate segmentation of lung lesions in chest CT images.
S-MEDSeg combines a pre-trained EfficientNet backbone, bidirectional feature pyramid network, and modern network advancements.
arXiv Detail & Related papers (2023-10-13T23:42:43Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
Cross-scale associations exist in the image patterns between the same case's CT images and its pathological images.
We propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on CT images.
arXiv Detail & Related papers (2023-08-09T02:04:05Z) - SGDA: Towards 3D Universal Pulmonary Nodule Detection via Slice Grouped
Domain Attention [47.44114201293201]
Lung cancer is the leading cause of cancer death worldwide.
Current pulmonary nodule detection methods are usually domain-specific.
We propose a slice grouped domain attention (SGDA) module to enhance the generalization capability of the pulmonary nodule detection networks.
arXiv Detail & Related papers (2023-03-07T03:17:49Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
This study aims at exploiting Artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions.
We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets.
The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
arXiv Detail & Related papers (2021-05-06T10:21:28Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
We propose an uncertainty-guided dual-consistency learning network (UDC-Net) for semi-supervised COVID-19 lesion segmentation from CT images.
Our proposed UDC-Net improves the fully supervised method by 6.3% in Dice and outperforms other competitive semi-supervised approaches by significant margins.
arXiv Detail & Related papers (2021-04-07T16:23:35Z) - A new semi-supervised self-training method for lung cancer prediction [0.28734453162509355]
There are only relatively few methods that simultaneously detect and classify nodules from computed tomography (CT) scans.
This study presents a complete end-to-end scheme to detect and classify lung nodules using the state-of-the-art Self-training with Noisy Student method.
arXiv Detail & Related papers (2020-12-17T09:53:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.