CPLOYO: A Pulmonary Nodule Detection Model with Multi-Scale Feature Fusion and Nonlinear Feature Learning
- URL: http://arxiv.org/abs/2503.10045v1
- Date: Thu, 13 Mar 2025 04:51:57 GMT
- Title: CPLOYO: A Pulmonary Nodule Detection Model with Multi-Scale Feature Fusion and Nonlinear Feature Learning
- Authors: Meng Wang, Zi Yang, Ruifeng Zhao, Yaoting Jiang,
- Abstract summary: Multi-type detection contributes to improving the overall lung cancer detection rate and enhancing the cure rate.<n>To achieve high sensitivity in nodule detection, targeted improvements were made to the YOLOv8 model.<n>The C2f_RepViTCAMF module was introduced to augment the C2f module in the backbone.<n>The MSCAF module was incorporated to reconstruct the feature fusion section of the model.
- Score: 8.128072264076822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of Internet of Things (IoT) technology in pulmonary nodule detection significantly enhances the intelligence and real-time capabilities of the detection system. Currently, lung nodule detection primarily focuses on the identification of solid nodules, but different types of lung nodules correspond to various forms of lung cancer. Multi-type detection contributes to improving the overall lung cancer detection rate and enhancing the cure rate. To achieve high sensitivity in nodule detection, targeted improvements were made to the YOLOv8 model. Firstly, the C2f\_RepViTCAMF module was introduced to augment the C2f module in the backbone, thereby enhancing detection accuracy for small lung nodules and achieving a lightweight model design. Secondly, the MSCAF module was incorporated to reconstruct the feature fusion section of the model, improving detection accuracy for lung nodules of varying scales. Furthermore, the KAN network was integrated into the model. By leveraging the KAN network's powerful nonlinear feature learning capability, detection accuracy for small lung nodules was further improved, and the model's generalization ability was enhanced. Tests conducted on the LUNA16 dataset demonstrate that the improved model outperforms the original model as well as other mainstream models such as YOLOv9 and RT-DETR across various evaluation metrics.
Related papers
- Innovative Silicosis and Pneumonia Classification: Leveraging Graph Transformer Post-hoc Modeling and Ensemble Techniques [2.7612447863077794]
This paper presents a comprehensive study on the classification and detection of Silicosis-related lung inflammation.<n>We create a newly curated chest X-ray (CXR) image dataset named SVBCX that is tailored to the nuances of lung inflammation caused by distinct agents.<n>We propose a novel deep-learning architecture that integrates graph transformer networks alongside a traditional deep neural network module.
arXiv Detail & Related papers (2024-12-31T16:03:43Z) - Deep Learning-Based Channel Squeeze U-Structure for Lung Nodule Detection and Segmentation [7.53596352508181]
This paper introduces a novel deep-learning method for the automatic detection and segmentation of lung nodules.
The method demonstrates superior performance in terms of sensitivity, Dice similarity coefficient, precision, and mean Intersection over Union (IoU)
The results indicate that this approach holds significant potential for improving computer-aided diagnosis systems.
arXiv Detail & Related papers (2024-09-20T19:47:07Z) - Convolutional Neural Networks for Predictive Modeling of Lung Disease [34.1086022278394]
Pro-HRnet-CNN is an innovative model combining HRNet and void-convolution techniques.
Compared with the traditional ResNet-50, Pro-HRnet-CNN showed better performance in the feature extraction and recognition of small-size nodules.
arXiv Detail & Related papers (2024-08-08T01:58:46Z) - Application of Computer Deep Learning Model in Diagnosis of Pulmonary Nodules [5.058992545593932]
The 3D simulation model of the lung was established by using the reconstruction method.
A computer aided pulmonary nodule detection model was constructed.
The recognition rate was significantly improved compared to conventional diagnostic methods.
arXiv Detail & Related papers (2024-06-19T04:27:27Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
Existing methods either involve computationally expensive context aggregation or lack prior modeling of polyps, resulting in poor performance in challenging cases.
In this paper, we propose the Enhanced CenterNet with Contrastive Learning (ECC-PolypDet), a two-stage training & end-to-end inference framework.
Box-assisted Contrastive Learning (BCL) during training to minimize the intra-class difference and maximize the inter-class difference between foreground polyps and backgrounds, enabling our model to capture concealed polyps.
In the fine-tuning stage, we introduce the IoU-guided Sample Re-weighting
arXiv Detail & Related papers (2024-01-10T07:03:41Z) - A Data Augmentation Method and the Embedding Mechanism for Detection and
Classification of Pulmonary Nodules on Small Samples [10.006124666261229]
Two strategies have been introduced: a new data augmentation method and a embedding mechanism.
The result of the 3DVNET model with the augmentation method for pulmonary nodule detection shows that the proposed data augmentation method outperforms the method based on generative adversarial network (GAN) framework.
arXiv Detail & Related papers (2023-03-02T13:58:45Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.