EVOLVE-X: Embedding Fusion and Language Prompting for User Evolution Forecasting on Social Media
- URL: http://arxiv.org/abs/2507.16847v1
- Date: Mon, 21 Jul 2025 05:07:07 GMT
- Title: EVOLVE-X: Embedding Fusion and Language Prompting for User Evolution Forecasting on Social Media
- Authors: Ismail Hossain, Sai Puppala, Md Jahangir Alam, Sajedul Talukder,
- Abstract summary: We present a novel approach to analyze and predict the evolution of user behavior on social media over their lifetime.<n>Our experiments demonstrate the potential of these models to forecast future stages of a user's social evolution.
- Score: 5.5997926295092295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media platforms serve as a significant medium for sharing personal emotions, daily activities, and various life events, ensuring individuals stay informed about the latest developments. From the initiation of an account, users progressively expand their circle of friends or followers, engaging actively by posting, commenting, and sharing content. Over time, user behavior on these platforms evolves, influenced by demographic attributes and the networks they form. In this study, we present a novel approach that leverages open-source models Llama-3-Instruct, Mistral-7B-Instruct, Gemma-7B-IT through prompt engineering, combined with GPT-2, BERT, and RoBERTa using a joint embedding technique, to analyze and predict the evolution of user behavior on social media over their lifetime. Our experiments demonstrate the potential of these models to forecast future stages of a user's social evolution, including network changes, future connections, and shifts in user activities. Experimental results highlight the effectiveness of our approach, with GPT-2 achieving the lowest perplexity (8.21) in a Cross-modal configuration, outperforming RoBERTa (9.11) and BERT, and underscoring the importance of leveraging Cross-modal configurations for superior performance. This approach addresses critical challenges in social media, such as friend recommendations and activity predictions, offering insights into the trajectory of user behavior. By anticipating future interactions and activities, this research aims to provide early warnings about potential negative outcomes, enabling users to make informed decisions and mitigate risks in the long term.
Related papers
- OPeRA: A Dataset of Observation, Persona, Rationale, and Action for Evaluating LLMs on Human Online Shopping Behavior Simulation [56.47029531207105]
OPERA is the first public dataset that comprehensively captures user personas, browser observations, fine-grained web actions, and self-reported just-in-time rationales.<n>We establish the first benchmark to evaluate how well current LLMs can predict a specific user's next action and rationale.
arXiv Detail & Related papers (2025-06-05T21:37:49Z) - EVOLVE: Predicting User Evolution and Network Dynamics in Social Media Using Fine-Tuned GPT-like Model [5.5997926295092295]
We propose a predictive method to understand how a user evolves on social media throughout their life.
We fine-tune a GPT-like decoder-only model to predict the future stages of a user's evolution in online social media.
arXiv Detail & Related papers (2024-07-12T21:20:57Z) - Model, Analyze, and Comprehend User Interactions within a Social Media Platform [0.6990493129893112]
We construct a user interaction graph from social media data and analyze it to gain insights into community dynamics.<n>Our study provides a comprehensive framework for understanding and managing online communities.
arXiv Detail & Related papers (2024-03-23T21:54:18Z) - Unveiling the Truth and Facilitating Change: Towards Agent-based Large-scale Social Movement Simulation [43.46328146533669]
Social media has emerged as a cornerstone of social movements, wielding significant influence in driving societal change.
We introduce a hybrid framework HiSim for social media user simulation, wherein users are categorized into two types.
We construct a Twitter-like environment to replicate their response dynamics following trigger events.
arXiv Detail & Related papers (2024-02-26T06:28:54Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSense is a framework that induces a belief-centered graph on top of an existent social network, along with graph-based propagation to capture social dynamics.
Our method surpasses existing state-of-the-art in experimental evaluations for both zero-shot and supervised settings.
arXiv Detail & Related papers (2023-10-20T06:17:02Z) - Analyzing Key Users' behavior trends in Volunteer-Based Networks [0.0]
The behavior of volunteers in volunteer-based social networks has been studied extensively in recent years.
We develop two novel algorithms: the first reveals key user behavior patterns over time; the second utilizes machine learning methods to generate a forecasting model.
To evaluate our algorithms, we utilized data from over 2.4 million users on a peer-to-peer food-sharing online platform.
arXiv Detail & Related papers (2023-10-04T06:42:21Z) - Ranking-based Group Identification via Factorized Attention on Social
Tripartite Graph [68.08590487960475]
We propose a novel GNN-based framework named Contextualized Factorized Attention for Group identification (CFAG)
We devise tripartite graph convolution layers to aggregate information from different types of neighborhoods among users, groups, and items.
To cope with the data sparsity issue, we devise a novel propagation augmentation layer, which is based on our proposed factorized attention mechanism.
arXiv Detail & Related papers (2022-11-02T01:42:20Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
We propose a Cross-network Social User Embedding framework, namely DP-CroSUE, to learn the comprehensive representations of users in a privacy-preserving way.
In particular, for each heterogeneous social network, we first introduce a hybrid differential privacy notion to capture the variation of privacy expectations for heterogeneous data types.
To further enhance user embeddings, a novel cross-network GCN embedding model is designed to transfer knowledge across networks through those aligned users.
arXiv Detail & Related papers (2022-09-04T06:22:37Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
We propose a novel framework to promote cascade size prediction by enhancing the user preference modeling.
Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate.
arXiv Detail & Related papers (2022-04-18T09:25:06Z) - Knowing your FATE: Friendship, Action and Temporal Explanations for User
Engagement Prediction on Social Apps [40.58156024231199]
We study a novel problem of explainable user engagement prediction for social network Apps.
We design an end-to-end neural framework, FATE, which incorporates three key factors that we identify to influence user engagement.
FATE is based on a tensor-based graph neural network (GNN), LSTM and a mixture attention mechanism, which allows for (a) predictive explanations based on learned weights across different feature categories, (b) reduced network complexity, and (c) improved performance in both prediction accuracy and training/inference time.
arXiv Detail & Related papers (2020-06-10T02:59:13Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
We will study the performance of different machine learning models when being learned on multi-modal data from different social networks.
Our initial experimental results reveal that social network choice impacts the performance.
arXiv Detail & Related papers (2020-02-05T11:10:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.