Harnessing RLHF for Robust Unanswerability Recognition and Trustworthy Response Generation in LLMs
- URL: http://arxiv.org/abs/2507.16951v1
- Date: Tue, 22 Jul 2025 18:44:18 GMT
- Title: Harnessing RLHF for Robust Unanswerability Recognition and Trustworthy Response Generation in LLMs
- Authors: Shuyuan Lin, Lei Duan, Philip Hughes, Yuxuan Sheng,
- Abstract summary: This paper introduces Self-Aware LLM for Unanswerability (SALU), a novel approach that deeply integrates unanswerability detection directly within the generative process.<n>SALU is trained using a multi-task learning framework for both standard Question Answering (QA) and explicit abstention generation for unanswerable queries.<n>It consistently outperforms strong baselines, including hybrid LLM-classifier systems, in overall accuracy for correctly answering or abstaining from questions.
- Score: 2.217239320172707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational Information Retrieval (CIR) systems, while offering intuitive access to information, face a significant challenge: reliably handling unanswerable questions to prevent the generation of misleading or hallucinated content. Traditional approaches often rely on external classifiers, which can introduce inconsistencies with the core generative Large Language Models (LLMs). This paper introduces Self-Aware LLM for Unanswerability (SALU), a novel approach that deeply integrates unanswerability detection directly within the LLM's generative process. SALU is trained using a multi-task learning framework for both standard Question Answering (QA) and explicit abstention generation for unanswerable queries. Crucially, it incorporates a confidence-score-guided reinforcement learning with human feedback (RLHF) phase, which explicitly penalizes hallucinated responses and rewards appropriate abstentions, fostering intrinsic self-awareness of knowledge boundaries. Through extensive experiments on our custom-built C-IR_Answerability dataset, SALU consistently outperforms strong baselines, including hybrid LLM-classifier systems, in overall accuracy for correctly answering or abstaining from questions. Human evaluation further confirms SALU's superior reliability, achieving high scores in factuality, appropriate abstention, and, most importantly, a dramatic reduction in hallucination, demonstrating its ability to robustly "know when to say 'I don't know'."
Related papers
- Contextual Candor: Enhancing LLM Trustworthiness Through Hierarchical Unanswerability Detection [0.0]
This paper introduces Reinforced Unanswerability Learning (RUL), a novel hybrid training paradigm for large language models (LLMs)<n>RUL integrates a discriminative unanswerability prediction head with the LLM's generative core, guided by a multi-stage learning strategy.<n>Experiments demonstrate RUL's superior performance, achieving significantly higher accuracy in unanswerability detection across sentence, paragraph, and ranking levels.
arXiv Detail & Related papers (2025-06-01T17:59:27Z) - Faithfulness-Aware Uncertainty Quantification for Fact-Checking the Output of Retrieval Augmented Generation [108.13261761812517]
We introduce FRANQ (Faithfulness-based Retrieval Augmented UNcertainty Quantification), a novel method for hallucination detection in RAG outputs.<n>We present a new long-form Question Answering (QA) dataset annotated for both factuality and faithfulness.
arXiv Detail & Related papers (2025-05-27T11:56:59Z) - Accommodate Knowledge Conflicts in Retrieval-augmented LLMs: Towards Reliable Response Generation in the Wild [11.058848731627233]
Large language models (LLMs) have advanced information retrieval systems.<n>LLMs often face knowledge conflicts between internal memory and retrievaled external information.<n>We propose Swin-VIB, a novel framework that integrates a pipeline of variational information bottleneck models into adaptive augmentation of retrieved information.
arXiv Detail & Related papers (2025-04-17T14:40:31Z) - Fostering Appropriate Reliance on Large Language Models: The Role of Explanations, Sources, and Inconsistencies [66.30619782227173]
Large language models (LLMs) can produce erroneous responses that sound fluent and convincing.<n>We identify several features of LLM responses that shape users' reliance.<n>We find that explanations increase reliance on both correct and incorrect responses.<n>We observe less reliance on incorrect responses when sources are provided or when explanations exhibit inconsistencies.
arXiv Detail & Related papers (2025-02-12T16:35:41Z) - ELOQ: Resources for Enhancing LLM Detection of Out-of-Scope Questions [52.33835101586687]
We study out-of-scope questions, where the retrieved document appears semantically similar to the question but lacks the necessary information to answer it.<n>We propose a guided hallucination-based approach ELOQ to automatically generate a diverse set of out-of-scope questions from post-cutoff documents.
arXiv Detail & Related papers (2024-10-18T16:11:29Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established.<n>This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt.<n>We propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty.
arXiv Detail & Related papers (2024-07-20T11:19:58Z) - Rejection Improves Reliability: Training LLMs to Refuse Unknown Questions Using RL from Knowledge Feedback [14.120154004011084]
Large Language Models (LLMs) often generate erroneous outputs, known as hallucinations.
We present a novel alignment framework called Reinforcement Learning from Knowledge Feedback (RLKF)
arXiv Detail & Related papers (2024-03-27T08:39:56Z) - INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection [39.52923659121416]
We propose to explore the dense semantic information retained within textbfINternal textbfStates for halluctextbfInation textbfDEtection.
A simple yet effective textbfEigenScore metric is proposed to better evaluate responses' self-consistency.
A test time feature clipping approach is explored to truncate extreme activations in the internal states.
arXiv Detail & Related papers (2024-02-06T06:23:12Z) - Examining LLMs' Uncertainty Expression Towards Questions Outside
Parametric Knowledge [35.067234242461545]
Large language models (LLMs) express uncertainty in situations where they lack sufficient parametric knowledge to generate reasonable responses.
This work aims to systematically investigate LLMs' behaviors in such situations, emphasizing the trade-off between honesty and helpfulness.
arXiv Detail & Related papers (2023-11-16T10:02:40Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks.
This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets.
arXiv Detail & Related papers (2023-10-10T03:05:44Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.