Optimal Pure Differentially Private Sparse Histograms in Near-Linear Deterministic Time
- URL: http://arxiv.org/abs/2507.17017v1
- Date: Tue, 22 Jul 2025 21:17:59 GMT
- Title: Optimal Pure Differentially Private Sparse Histograms in Near-Linear Deterministic Time
- Authors: Florian Kerschbaum, Steven Lee, Hao Wu,
- Abstract summary: We introduce an algorithm that releases a pure differentially private sparse histogram over $n$ participants drawn from a domain of size $d gg n$.<n>Our method attains the optimal $ell_infty$-estimation error and runs in strictly $O(n ln ln d)$ time in the word-RAM model.
- Score: 27.86810658667445
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We introduce an algorithm that releases a pure differentially private sparse histogram over $n$ participants drawn from a domain of size $d \gg n$. Our method attains the optimal $\ell_\infty$-estimation error and runs in strictly $O(n \ln \ln d)$ time in the word-RAM model, thereby improving upon the previous best known deterministic-time bound of $\tilde{O}(n^2)$ and resolving the open problem of breaking this quadratic barrier (Balcer and Vadhan, 2019). Central to our algorithm is a novel private item blanket technique with target-length padding, which transforms the approximate differentially private stability-based histogram algorithm into a pure differentially private one.
Related papers
- Private Continual Counting of Unbounded Streams [11.941250828872189]
We study the problem of differentially private continual counting in the unbounded setting where the input size $n$ is not known in advance.<n>Using the common doubling trick' avoids knowledge of $n$ but leads to suboptimal and non-smooth error.<n>We introduce novel matrix factorizations based on logarithmic perturbations of the function $frac1sqrt1-z$ studied in prior works.
arXiv Detail & Related papers (2025-06-17T23:09:53Z) - Differentially Private Space-Efficient Algorithms for Counting Distinct Elements in the Turnstile Model [61.40326886123332]
We give the first sublinear space differentially private algorithms for the fundamental problem of counting distinct elements in the turnstile streaming model.<n>Our result significantly improves upon the space requirements of the state-of-the-art algorithms for this problem, which is linear.<n>When a bound $W$ on the number of times an item appears in the stream is known, our algorithm provides $tildeO_eta(sqrtW)$ additive error using $tildeO_eta(sqrtW)$ space.
arXiv Detail & Related papers (2025-05-29T17:21:20Z) - Optimized Tradeoffs for Private Prediction with Majority Ensembling [59.99331405291337]
We introduce the Data-dependent Randomized Response Majority (DaRRM) algorithm.<n>DaRRM is parameterized by a data-dependent noise function $gamma$, and enables efficient utility optimization over the class of all private algorithms.<n>We show that DaRRM provably enjoys a privacy gain of a factor of 2 over common baselines, with fixed utility.
arXiv Detail & Related papers (2024-11-27T00:48:48Z) - Differentially Private Algorithms for Graph Cuts: A Shifting Mechanism Approach and More [5.893651469750359]
We introduce edgedifferentially private algorithms for the multiway cut and the minimum $k$cut.<n>For the minimum $k$-cut problem we use a different approach, combining the exponential mechanism with bounds on the number of approximate $k$-cuts.
arXiv Detail & Related papers (2024-07-09T14:46:33Z) - Private Stochastic Convex Optimization with Heavy Tails: Near-Optimality from Simple Reductions [19.008521454738425]
We study the problem of differentially private convex optimization (DP-SCO) with heavy-tailed gradients, where we assume a $ktextth$-moment bound on the Lipschitz constants of sample functions rather than a uniform bound.
We propose a new reduction-based approach that enables us to obtain the first optimal rates (up to logarithmic factors) in the heavy-tailed setting, achieving error $Gcdot frac 1 sqrt n + G_k cdot (fracsqrt dnepsilon)1
arXiv Detail & Related papers (2024-06-04T21:26:29Z) - Almost linear time differentially private release of synthetic graphs [6.076406622352115]
In this paper, we give almost linear time and space algorithms to sample from an exponential mechanism.
As a direct result, we define a differential input an $n$m edges exponentially large $G$
These are privatefirst private algorithms for releasing synthetic graphs.
arXiv Detail & Related papers (2024-06-04T09:44:24Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Anonymized Histograms in Intermediate Privacy Models [54.32252900997422]
We provide an algorithm with a nearly matching error guarantee of $tildeO_varepsilon(sqrtn)$ in the shuffle DP and pan-private models.
Our algorithm is very simple: it just post-processes the discrete Laplace-noised histogram.
arXiv Detail & Related papers (2022-10-27T05:11:00Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.