Computational Performance Bounds Prediction in Quantum Computing with Unstable Noise
- URL: http://arxiv.org/abs/2507.17043v1
- Date: Tue, 22 Jul 2025 22:00:09 GMT
- Title: Computational Performance Bounds Prediction in Quantum Computing with Unstable Noise
- Authors: Jinyang Li, Samudra Dasgupta, Yuhong Song, Lei Yang, Travis Humble, Weiwen Jiang,
- Abstract summary: Noise in quantum devices poses significant barriers to realizing this supremacy.<n>Next-generation quantum-centric supercomputing essentially requires efficient and accurate noise characterization.<n>We propose a data-driven workflow, namely QuBound, to predict computational performance bounds.
- Score: 6.6884244790434195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing has significantly advanced in recent years, boasting devices with hundreds of quantum bits (qubits), hinting at its potential quantum advantage over classical computing. Yet, noise in quantum devices poses significant barriers to realizing this supremacy. Understanding noise's impact is crucial for reproducibility and application reuse; moreover, the next-generation quantum-centric supercomputing essentially requires efficient and accurate noise characterization to support system management (e.g., job scheduling), where ensuring correct functional performance (i.e., fidelity) of jobs on available quantum devices can even be higher-priority than traditional objectives. However, noise fluctuates over time, even on the same quantum device, which makes predicting the computational bounds for on-the-fly noise is vital. Noisy quantum simulation can offer insights but faces efficiency and scalability issues. In this work, we propose a data-driven workflow, namely QuBound, to predict computational performance bounds. It decomposes historical performance traces to isolate noise sources and devises a novel encoder to embed circuit and noise information processed by a Long Short-Term Memory (LSTM) network. For evaluation, we compare QuBound with a state-of-the-art learning-based predictor, which only generates a single performance value instead of a bound. Experimental results show that the result of the existing approach falls outside of performance bounds, while all predictions from our QuBound with the assistance of performance decomposition better fit the bounds. Moreover, QuBound can efficiently produce practical bounds for various circuits with over 106 speedup over simulation; in addition, the range from QuBound is over 10x narrower than the state-of-the-art analytical approach.
Related papers
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - Correlating noise floor with magic and entanglement in Pauli product states [37.69303106863453]
We show the ability to recover resources specific to quantum computing from noisy states generated by Pauli product formulas.<n>The fidelity of purified states represents the noise floor of a given computation.<n>We experimentally validate these findings by collecting classical shadow data for a range of small circuits.
arXiv Detail & Related papers (2025-05-07T19:24:00Z) - Efficient simulation of parametrized quantum circuits under non-unital noise through Pauli backpropagation [4.903915603499684]
Pauli backpropagation algorithms have already demonstrated their ability to efficiently simulate certain classes of parameterized quantum circuits.<n>Here, we close this gap by adapting Pauli backpropagation to non-unital noise.
arXiv Detail & Related papers (2025-01-22T17:58:59Z) - Bayesian Quantum Amplitude Estimation [49.1574468325115]
We present BAE, a problem-tailored and noise-aware Bayesian algorithm for quantum amplitude estimation.<n>In a fault tolerant scenario, BAE is capable of saturating the Heisenberg limit; if device noise is present, BAE can dynamically characterize it and self-adapt.<n>We propose a benchmark for amplitude estimation algorithms and use it to test BAE against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Noise-Aware Distributed Quantum Approximate Optimization Algorithm on Near-term Quantum Hardware [2.753858051267023]
This paper introduces a noise-aware distributed Quantum Approximate Optimization Algorithm (QAOA) tailored for execution on near-term quantum hardware.
We address the limitations of current Noisy Intermediate-Scale Quantum (NISQ) devices, which are hindered by limited qubit counts and high error rates.
arXiv Detail & Related papers (2024-07-24T14:50:01Z) - Optimized Noise Suppression for Quantum Circuits [0.40964539027092917]
Crosstalk noise is a severe error source in, e.g., cross-resonance based superconducting quantum processors.
Intrepid programming algorithm extends previous work on optimized qubit routing by swap insertion.
We evaluate the proposed method by characterizing crosstalk noise for two chips with up to 127 qubits.
arXiv Detail & Related papers (2024-01-12T07:34:59Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
We consider biased-noise qubits affected only by bit-flip errors, which is motivated by existing systems of stabilized cat qubits.
For realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we show that our benchmark could check the correctness of circuits containing up to $106$ gates.
arXiv Detail & Related papers (2023-05-03T11:27:50Z) - Topological data analysis on noisy quantum computers [11.975008559320875]
Topological data analysis (TDA) is a powerful technique for extracting complex and valuable shape-related summaries of high-dimensional data.
The computational demands of classical algorithms for computing TDA are exorbitant, and quickly become impractical for high-order characteristics.
We present a fully implemented end-to-end quantum machine learning algorithm that is applicable to high-dimensional classical data.
arXiv Detail & Related papers (2022-09-19T22:45:00Z) - Limitations of variational quantum algorithms: a quantum optimal
transport approach [11.202435939275675]
We obtain extremely tight bounds for standard NISQ proposals in both the noisy and noiseless regimes.
The bounds limit the performance of both circuit model algorithms, such as QAOA, and also continuous-time algorithms, such as quantum annealing.
arXiv Detail & Related papers (2022-04-07T13:58:44Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Limitations of optimization algorithms on noisy quantum devices [0.0]
We present a transparent way of comparing classical algorithms to quantum ones running on near-term quantum devices.
Our approach is based on the combination of entropic inequalities that determine how fast the quantum state converges to the fixed point of the noise model.
arXiv Detail & Related papers (2020-09-11T17:07:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.