FedVLM: Scalable Personalized Vision-Language Models through Federated Learning
- URL: http://arxiv.org/abs/2507.17088v1
- Date: Wed, 23 Jul 2025 00:05:02 GMT
- Title: FedVLM: Scalable Personalized Vision-Language Models through Federated Learning
- Authors: Arkajyoti Mitra, Afia Anjum, Paul Agbaje, Mert Pesé, Habeeb Olufowobi,
- Abstract summary: Vision-language models (VLMs) demonstrate impressive zero-shot and few-shot learning capabilities.<n>Fine-tuning these models at scale remains challenging in federated environments where data is decentralized and non-iid across clients.<n>We propose FedVLM, a federated LoRA fine-tuning framework that enables decentralized adaptation of VLMs while preserving model privacy.
- Score: 3.262230127283452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-language models (VLMs) demonstrate impressive zero-shot and few-shot learning capabilities, making them essential for several downstream tasks. However, fine-tuning these models at scale remains challenging, particularly in federated environments where data is decentralized and non-iid across clients. Existing parameter-efficient tuning methods like LoRA (Low-Rank Adaptation) reduce computational overhead but struggle with heterogeneous client data, leading to suboptimal generalization. To address these challenges, we propose FedVLM, a federated LoRA fine-tuning framework that enables decentralized adaptation of VLMs while preserving model privacy and reducing reliance on centralized training. To further tackle data heterogeneity, we introduce personalized LoRA (pLoRA), which dynamically adapts LoRA parameters to each client's unique data distribution, significantly improving local adaptation while maintaining global model aggregation. Experiments on the RLAIF-V dataset show that pLoRA improves client-specific performance by 24.5% over standard LoRA, demonstrating superior adaptation in non-iid settings. FedVLM provides a scalable and efficient solution for fine-tuning VLMs in federated settings, advancing personalized adaptation in distributed learning scenarios.
Related papers
- HSplitLoRA: A Heterogeneous Split Parameter-Efficient Fine-Tuning Framework for Large Language Models [30.345920952847752]
Large language models (LLMs) have achieved remarkable breakthroughs, revolutionizing the natural language processing domain and beyond.<n>Due to immense parameter sizes, fine-tuning these models with private data for diverse downstream tasks has become mainstream.<n>We propose HSplitLoRA, a framework built on split learning (SL) and low-rank adaptation (LoRA) fine-tuning, for efficiently fine-tuning LLMs on heterogeneous client devices.
arXiv Detail & Related papers (2025-05-05T17:09:19Z) - FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors [50.131271229165165]
Federated Learning (FL) has emerged as a promising framework for distributed machine learning.<n>Data heterogeneity resulting from differences across user behaviors, preferences, and device characteristics poses a significant challenge for federated learning.<n>We propose Adaptive Weight Aggregation (FedAWA), a novel method that adaptively adjusts aggregation weights based on client vectors during the learning process.
arXiv Detail & Related papers (2025-03-20T04:49:40Z) - FedALT: Federated Fine-Tuning through Adaptive Local Training with Rest-of-World LoRA [5.162783756846019]
Fine-tuning large language models (LLMs) in federated settings enables privacy-preserving adaptation but suffers from cross-client interference due to model aggregation.<n>We propose textbfFedALT, a novel personalized federated LoRA fine-tuning algorithm.<n>We demonstrate that FedALT significantly outperforms state-of-the-art personalized federated LoRA fine-tuning methods.
arXiv Detail & Related papers (2025-03-14T21:07:46Z) - FedRand: Enhancing Privacy in Federated Learning with Randomized LoRA Subparameter Updates [58.18162789618869]
Federated Learning (FL) is a widely used framework for training models in a decentralized manner.<n>We propose the FedRand framework, which avoids disclosing the full set of client parameters.<n>We empirically validate that FedRand improves robustness against MIAs compared to relevant baselines.
arXiv Detail & Related papers (2025-03-10T11:55:50Z) - Decentralized Low-Rank Fine-Tuning of Large Language Models [14.75695352321115]
We propose Dec-LoRA, a decentralized fine-tuning algorithm for Large Language Models (LLMs) based Low-Rank Adaptation (LoRA)<n>Through experiments on BERT and LLaMA, we demonstrate that Dec-LoRA achieves comparable performance to centralized LoRA under various conditions.<n>These findings highlight the potential of Dec-LoRA for scalable fine-tuning in decentralized environments.
arXiv Detail & Related papers (2025-01-26T01:56:25Z) - Unlocking Tuning-Free Few-Shot Adaptability in Visual Foundation Models by Recycling Pre-Tuned LoRAs [76.40876036912537]
Large Language Models (LLMs) demonstrate strong few-shot adaptability without requiring fine-tuning.<n>Current Visual Foundation Models (VFMs) require explicit fine-tuning with sufficient tuning data.<n>We propose a framework, LoRA Recycle, that distills a meta-LoRA from diverse pre-tuned LoRAs with a meta-learning objective.
arXiv Detail & Related papers (2024-12-03T07:25:30Z) - Modality Alignment Meets Federated Broadcasting [9.752555511824593]
Federated learning (FL) has emerged as a powerful approach to safeguard data privacy by training models across distributed edge devices without centralizing local data.
This paper introduces a novel FL framework leveraging modality alignment, where a text encoder resides on the server, and image encoders operate on local devices.
arXiv Detail & Related papers (2024-11-24T13:30:03Z) - LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement [5.162783756846019]
Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning.<n>Low-Rank Adaptation (LoRA) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters.<n>LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2024-11-22T14:19:01Z) - HAFLQ: Heterogeneous Adaptive Federated LoRA Fine-tuned LLM with Quantization [55.972018549438964]
Federated fine-tuning of pre-trained Large Language Models (LLMs) enables task-specific adaptation across diverse datasets while preserving privacy.<n>We propose HAFLQ (Heterogeneous Adaptive Federated Low-Rank Adaptation Fine-tuned LLM with Quantization), a novel framework for efficient and scalable fine-tuning of LLMs in heterogeneous environments.<n> Experimental results on the text classification task demonstrate that HAFLQ reduces memory usage by 31%, lowers communication cost by 49%, improves accuracy by 50%, and achieves faster convergence compared to the baseline method.
arXiv Detail & Related papers (2024-11-10T19:59:54Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - FedRA: A Random Allocation Strategy for Federated Tuning to Unleash the
Power of Heterogeneous Clients [50.13097183691517]
In real-world federated scenarios, there often exist a multitude of heterogeneous clients with varying computation and communication resources.
We propose a novel federated tuning algorithm, FedRA.
In each communication round, FedRA randomly generates an allocation matrix.
It reorganizes a small number of layers from the original model based on the allocation matrix and fine-tunes using adapters.
arXiv Detail & Related papers (2023-11-19T04:43:16Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.