論文の概要: HySafe-AI: Hybrid Safety Architectural Analysis Framework for AI Systems: A Case Study
- arxiv url: http://arxiv.org/abs/2507.17118v1
- Date: Wed, 23 Jul 2025 01:41:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 22:33:14.81733
- Title: HySafe-AI: Hybrid Safety Architectural Analysis Framework for AI Systems: A Case Study
- Title(参考訳): HySafe-AI: AIシステムのためのハイブリッド安全アーキテクチャ分析フレームワーク:ケーススタディ
- Authors: Mandar Pitale, Jelena Frtunikj, Abhinaw Priyadershi, Vasu Singh, Maria Spence,
- Abstract要約: AIは、自律運転システム(ADS)やロボット工学のような安全クリティカルな分野に不可欠なものになっている。
本稿では,異なるアーキテクチャのソリューションをレビューし,共通安全性解析の有効性を評価する。
我々は,AIシステムの安全性を評価するために,従来の手法を適用したハイブリッドフレームワークであるHySAFE-AIを紹介する。
- 参考スコア(独自算出の注目度): 5.447634497206096
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: AI has become integral to safety-critical areas like autonomous driving systems (ADS) and robotics. The architecture of recent autonomous systems are trending toward end-to-end (E2E) monolithic architectures such as large language models (LLMs) and vision language models (VLMs). In this paper, we review different architectural solutions and then evaluate the efficacy of common safety analyses such as failure modes and effect analysis (FMEA) and fault tree analysis (FTA). We show how these techniques can be improved for the intricate nature of the foundational models, particularly in how they form and utilize latent representations. We introduce HySAFE-AI, Hybrid Safety Architectural Analysis Framework for AI Systems, a hybrid framework that adapts traditional methods to evaluate the safety of AI systems. Lastly, we offer hints of future work and suggestions to guide the evolution of future AI safety standards.
- Abstract(参考訳): AIは、自律運転システム(ADS)やロボット工学のような安全クリティカルな分野に不可欠なものになっている。
最近の自律システムのアーキテクチャは、大規模言語モデル(LLM)やビジョン言語モデル(VLM)といった、エンドツーエンド(E2E)のモノリシックアーキテクチャに向かっている。
本稿では、異なるアーキテクチャのソリューションをレビューし、障害モードや効果解析(FMEA)やフォールトツリー解析(FTA)といった一般的な安全解析の有効性を評価する。
基礎モデルの複雑な性質,特に潜在表現の形成と利用において,これらの技術がどのように改善されるかを示す。
我々は,AIシステムの安全性を評価するために,従来の手法を適用したハイブリッドフレームワークであるHySAFE-AIを紹介する。
最後に、将来のAI安全標準の進化を導くための今後の作業と提案のヒントを提供する。
関連論文リスト
- BlueGlass: A Framework for Composite AI Safety [0.2999888908665658]
本稿では,統合されたインフラストラクチャを提供することで,AIの安全性を促進するためのフレームワークであるBlueGlassを紹介する。
本フレームワークの有用性を実証するために,視覚言語評価における安全性指向の3つの分析法を提案する。
より広い範囲で、この研究は、より堅牢で信頼性の高いAIシステムを構築するためのインフラストラクチャと発見に貢献している。
論文 参考訳(メタデータ) (2025-07-14T09:45:34Z) - Report on NSF Workshop on Science of Safe AI [75.96202715567088]
機械学習の新たな進歩は、社会問題に対する技術ベースのソリューションを開発する新たな機会につながっている。
AIの約束を果たすためには、正確でパフォーマンスが高く、安全で信頼性の高いAIベースのシステムを開発する方法に取り組む必要がある。
本報告はワークショップの安全性の異なる側面に対処した作業グループにおける議論の結果である。
論文 参考訳(メタデータ) (2025-06-24T18:55:29Z) - AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement [73.0700818105842]
我々は、AI安全のための代表的攻撃、防衛、評価方法論を統合する統合されたフレームワークとツールキットであるAISafetyLabを紹介する。
AISafetyLabには直感的なインターフェースがあり、開発者はシームレスにさまざまなテクニックを適用できる。
我々はヴィクナに関する実証的研究を行い、異なる攻撃戦略と防衛戦略を分析し、それらの比較効果に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-02-24T02:11:52Z) - Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Model-Driven Security Analysis of Self-Sovereign Identity Systems [2.5475486924467075]
本稿では,SSIシステムのアーキテクチャパターンをモデル化するためのモデル駆動型セキュリティ分析フレームワークを提案する。
我々のフレームワークは、時間論理におけるセキュリティ特性を持つパターンや脅威を形式化するモデリング言語を機械化する。
SecureSSIで検証された典型的な脆弱性パターンを示す。
論文 参考訳(メタデータ) (2024-06-02T05:44:32Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review [12.38351931894004]
本稿では,安全かつ信頼性の高い自動運転のための説明可能な手法に関する,最初の体系的な文献レビューを紹介する。
我々は、ADにおける安全で信頼性の高いAIに対するXAIの5つの重要な貢献を特定し、それらは解釈可能な設計、解釈可能な代理モデル、解釈可能なモニタリング、補助的な説明、解釈可能な検証である。
我々は、これらのコントリビューションを統合するためにSafeXと呼ばれるモジュラーフレームワークを提案し、同時にAIモデルの安全性を確保しながら、ユーザへの説明提供を可能にした。
論文 参考訳(メタデータ) (2024-02-08T09:08:44Z) - Architecting Safer Autonomous Aviation Systems [1.2599533416395767]
本稿では,従来の航空システムで使用される共通アーキテクチャパターンについて考察し,安全性と安全性の保証がもたらす影響について考察する。
安全性を建築上の特性として考慮し、設計ライフサイクルの初期段階において、安全要件の割り当てとアーキテクチャ上のトレードオフの両方について論じる。
論文 参考訳(メタデータ) (2023-01-09T21:02:18Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - On Safety Assessment of Artificial Intelligence [0.0]
人工知能の多くのモデル、特に機械学習は統計モデルであることを示す。
危険なランダム障害の予算の一部は、AIシステムの確率論的欠陥行動に使用される必要がある。
我々は、安全関連システムにおけるAIの利用に決定的な研究課題を提案する。
論文 参考訳(メタデータ) (2020-02-29T14:05:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。