Towards Human-level Intelligence via Human-like Whole-Body Manipulation
- URL: http://arxiv.org/abs/2507.17141v1
- Date: Wed, 23 Jul 2025 02:23:41 GMT
- Title: Towards Human-level Intelligence via Human-like Whole-Body Manipulation
- Authors: Guang Gao, Jianan Wang, Jinbo Zuo, Junnan Jiang, Jingfan Zhang, Xianwen Zeng, Yuejiang Zhu, Lianyang Ma, Ke Chen, Minhua Sheng, Ruirui Zhang, Zhaohui An,
- Abstract summary: We present Astribot Suite, a robot learning suite for whole-body manipulation aimed at general daily tasks across diverse environments.<n>Our results show that Astribot's cohesive integration of embodiment, teleoperation interface, and learning pipeline marks a significant step towards real-world, general-purpose whole-body robotic manipulation.
- Score: 10.199110135230674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building general-purpose intelligent robots has long been a fundamental goal of robotics. A promising approach is to mirror the evolutionary trajectory of humans: learning through continuous interaction with the environment, with early progress driven by the imitation of human behaviors. Achieving this goal presents three core challenges: (1) designing safe robotic hardware with human-level physical capabilities; (2) developing an intuitive and scalable whole-body teleoperation interface for data collection; and (3) creating algorithms capable of learning whole-body visuomotor policies from human demonstrations. To address these challenges in a unified framework, we propose Astribot Suite, a robot learning suite for whole-body manipulation aimed at general daily tasks across diverse environments. We demonstrate the effectiveness of our system on a wide range of activities that require whole-body coordination, extensive reachability, human-level dexterity, and agility. Our results show that Astribot's cohesive integration of embodiment, teleoperation interface, and learning pipeline marks a significant step towards real-world, general-purpose whole-body robotic manipulation, laying the groundwork for the next generation of intelligent robots.
Related papers
- A roadmap for AI in robotics [55.87087746398059]
We are witnessing growing excitement in robotics at the prospect of leveraging the potential of AI to tackle some of the outstanding barriers to the full deployment of robots in our daily lives.<n>This article offers an assessment of what AI for robotics has achieved since the 1990s and proposes a short- and medium-term research roadmap listing challenges and promises.
arXiv Detail & Related papers (2025-07-26T15:18:28Z) - OminiAdapt: Learning Cross-Task Invariance for Robust and Environment-Aware Robotic Manipulation [1.4719692998274154]
This paper proposes an imitation learning algorithm tailored for humanoid robots.<n>By focusing on the primary task objectives, the proposed algorithm suppresses environmental disturbances.<n> Experimental results demonstrate that the proposed method exhibits robustness and scalability across various typical task scenarios.
arXiv Detail & Related papers (2025-03-27T08:28:22Z) - Human-Humanoid Robots Cross-Embodiment Behavior-Skill Transfer Using Decomposed Adversarial Learning from Demonstration [9.42179962375058]
We propose a transferable framework that reduces the data bottleneck by using a unified digital human model as a common prototype.<n>The model learns behavior primitives from human demonstrations through adversarial imitation, and complex robot structures are decomposed into functional components.<n>Our framework is validated on five humanoid robots with diverse configurations.
arXiv Detail & Related papers (2024-12-19T18:41:45Z) - $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0 is a simulation platform for studying collaborative human-robot tasks in home environments.
It addresses challenges in modeling complex deformable bodies and diversity in appearance and motion.
Human-in-the-loop infrastructure enables real human interaction with simulated robots via mouse/keyboard or a VR interface.
arXiv Detail & Related papers (2023-10-19T17:29:17Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
We propose the first framework to learn control policies for vision-based human-to-robot handovers.
We show significant performance gains over baselines on a simulation benchmark, sim-to-sim transfer and sim-to-real transfer.
arXiv Detail & Related papers (2023-03-30T17:58:36Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Aligning Robot Representations with Humans [5.482532589225552]
Key question is how to best transfer knowledge learned in one environment to another, where shifting constraints and human preferences render adaptation challenging.
We postulate that because humans will be the ultimate evaluator of system success in the world, they are best suited to communicating the aspects of the tasks that matter to the robot.
We highlight three areas where we can use this approach to build interactive systems and offer future directions of work to better create advanced collaborative robots.
arXiv Detail & Related papers (2022-05-15T15:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.