論文の概要: Rethinking ChatGPT's Success: Usability and Cognitive Behaviors Enabled by Auto-regressive LLMs' Prompting
- arxiv url: http://arxiv.org/abs/2405.10474v1
- Date: Fri, 17 May 2024 00:19:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 17:11:53.680584
- Title: Rethinking ChatGPT's Success: Usability and Cognitive Behaviors Enabled by Auto-regressive LLMs' Prompting
- Title(参考訳): ChatGPTの成功を再考する: 自己回帰型LLMのプロンプトによるユーザビリティと認知行動
- Authors: Xinzhe Li, Ming Liu,
- Abstract要約: 本研究では,2種類の大規模言語モデルと6種類のタスク固有チャネルにおけるモーダル性の構造を分析した。
本研究では,LLMにおける多様な認知行動の刺激について,自由形テキストと言語文脈の導入を通して検討する。
- 参考スコア(独自算出の注目度): 5.344199202349884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the last decade, a wide range of training and deployment strategies for Large Language Models (LLMs) have emerged. Among these, the prompting paradigms of Auto-regressive LLMs (AR-LLMs) have catalyzed a significant surge in Artificial Intelligence (AI). This paper aims to emphasize the significance of utilizing free-form modalities (forms of input and output) and verbal free-form contexts as user-directed channels (methods for transforming modalities) for downstream deployment. Specifically, we analyze the structure of modalities within both two types of LLMs and six task-specific channels during deployment. From the perspective of users, our analysis introduces and applies the analytical metrics of task customizability, transparency, and complexity to gauge their usability, highlighting the superior nature of AR-LLMs' prompting paradigms. Moreover, we examine the stimulation of diverse cognitive behaviors in LLMs through the adoption of free-form text and verbal contexts, mirroring human linguistic expressions of such behaviors. We then detail four common cognitive behaviors to underscore how AR-LLMs' prompting successfully imitate human-like behaviors using this free-form modality and channel. Lastly, the potential for improving LLM deployment, both as autonomous agents and within multi-agent systems, is identified via cognitive behavior concepts and principles.
- Abstract(参考訳): 過去10年間で、大規模言語モデル(LLM)の幅広いトレーニングとデプロイメント戦略が出現した。
これらのうち、自己回帰LDM(AR-LLM)の促進パラダイムは、人工知能(AI)の大きな飛躍を触媒している。
本稿では, ユーザ指向チャネル(モダリティ変換手法)として, 自由形式のモダリティ(入力と出力の形式)と自由形式の文脈を活用することの重要性を強調する。
具体的には,2種類のLCMと6つのタスク固有のチャネルの配置におけるモード構造を解析する。
ユーザの視点からは、AR-LLMの促進パラダイムの優れた性質を強調し、ユーザビリティを評価するためにタスクカスタマイズ性、透明性、複雑さの分析指標を導入し、適用する。
さらに,LLMにおける多様な認知行動の刺激について,自由形式テキストと言語文脈の活用を通して検討し,そのような行動の人間の言語表現を反映した。
そして、この自由な形態のモダリティとチャネルを用いて、AR-LLMがいかに人間の様態を模倣するかを明らかにするために、4つの一般的な認知行動について詳述する。
最後に、自律エージェントとマルチエージェントシステムの両方において、LLMデプロイメントを改善する可能性は、認知行動の概念と原則によって識別される。
関連論文リスト
- Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
生成的トレーニングにより、視覚言語モデル(VLM)は様々な複雑なタスクに取り組むことができる。
CLIPのようなモデルで実証された差別的トレーニングは、ゼロショットイメージテキストの分類と検索に優れています。
本稿では,両パラダイムの強みを統合する統一的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-01T01:51:31Z) - Unlocking Structured Thinking in Language Models with Cognitive Prompting [0.0]
本研究では,大規模言語モデルにおける問題解決を導く新しい手法として認知的プロンプトを提案する。
メタのLLaMAモデルにおいて認知的プロンプトの有効性を評価する。
論文 参考訳(メタデータ) (2024-10-03T19:53:47Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
大型言語モデル(LLM)は、エンボディドインテリジェンスの発展に変化をもたらした。
本稿では,このプロセスにおけるバックドアセキュリティの重大な脅威を明らかにする。
ほんの少しの文脈的デモンストレーションを毒殺しただけで、攻撃者はブラックボックスLDMの文脈的環境を隠蔽することができる。
論文 参考訳(メタデータ) (2024-08-06T01:20:12Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - Explaining Large Language Models Decisions with Shapley Values [1.223779595809275]
大規模言語モデル(LLM)は、人間の行動や認知過程をシミュレートするエキサイティングな可能性を開いた。
しかし, LLMを人体用スタンドインとして活用する妥当性は, いまだに不明である。
本稿では,モデルの出力に対する各プロンプト成分の相対的寄与を定量化するために,シェープリー値に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T22:49:43Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
大規模言語モデル(LLM)は、自然言語処理タスクの幅広い領域にわたる変換的進歩を触媒している。
我々は,自己認識型誤り識別と訂正機能を備えたLLMを実現するために,textbfCLEARと呼ばれる革新的なテキストメタ認知手法を提案する。
論文 参考訳(メタデータ) (2024-03-08T19:18:53Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Synergistic Integration of Large Language Models and Cognitive
Architectures for Robust AI: An Exploratory Analysis [12.9222727028798]
本稿では、知的行動を示す人工知能エージェントの開発に使用される2つのAIサブセクタの統合について考察する:大規模言語モデル(LLM)と認知アーキテクチャ(CA)である。
我々は3つの統合的アプローチを提案し、それぞれ理論モデルに基づいて、予備的な経験的証拠によって支持される。
これらのアプローチは、LSMとCAの長所を活用すると同時に、弱点を軽減し、より堅牢なAIシステムの開発を促進することを目的としている。
論文 参考訳(メタデータ) (2023-08-18T21:42:47Z) - AI Text-to-Behavior: A Study In Steerability [0.0]
大規模言語モデル(LLM)の操舵性に関する研究
我々は,OCEANと呼ばれる行動心理学の枠組みを用いて,モデルが調整されたプロンプトに対する応答性を定量的に測定した。
以上の結果から,GPTの汎用性と,ニュアンス命令の識別と適応能力が評価された。
論文 参考訳(メタデータ) (2023-08-07T18:14:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。