A Steel Surface Defect Detection Method Based on Lightweight Convolution Optimization
- URL: http://arxiv.org/abs/2507.15476v1
- Date: Mon, 21 Jul 2025 10:30:38 GMT
- Title: A Steel Surface Defect Detection Method Based on Lightweight Convolution Optimization
- Authors: Cong Chen, Ming Chen, Hoileong Lee, Yan Li, Jiyang Yu,
- Abstract summary: This study proposes a detection framework based on deep learning, specifically YOLOv9s, to improve defect detection accuracy and model performance.<n> Experimental results demonstrate that the proposed model achieves higher accuracy and robustness in steel surface defect detection tasks compared to other methods.
- Score: 12.113216180751605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Surface defect detection of steel, especially the recognition of multi-scale defects, has always been a major challenge in industrial manufacturing. Steel surfaces not only have defects of various sizes and shapes, which limit the accuracy of traditional image processing and detection methods in complex environments. However, traditional defect detection methods face issues of insufficient accuracy and high miss-detection rates when dealing with small target defects. To address this issue, this study proposes a detection framework based on deep learning, specifically YOLOv9s, combined with the C3Ghost module, SCConv module, and CARAFE upsampling operator, to improve detection accuracy and model performance. First, the SCConv module is used to reduce feature redundancy and optimize feature representation by reconstructing the spatial and channel dimensions. Second, the C3Ghost module is introduced to enhance the model's feature extraction ability by reducing redundant computations and parameter volume, thereby improving model efficiency. Finally, the CARAFE upsampling operator, which can more finely reorganize feature maps in a content-aware manner, optimizes the upsampling process and ensures detailed restoration of high-resolution defect regions. Experimental results demonstrate that the proposed model achieves higher accuracy and robustness in steel surface defect detection tasks compared to other methods, effectively addressing defect detection problems.
Related papers
- Multi-Scale PCB Defect Detection with YOLOv8 Network Improved via Pruning and Lightweight Network [0.0]
YOLOv8 is able to improve the detection speed and accuracy by optimizing the backbone network, the neck network and the detection head, the loss function and the adaptive pruning rate.<n>On the publicly available PCB defect dataset, mAP0.5 reaches 99.32% and mAP0.5:0.9 reaches 75.18%, which is 10.13% higher compared to YOLOv8n.
arXiv Detail & Related papers (2025-07-23T03:47:00Z) - PA-CLIP: Enhancing Zero-Shot Anomaly Detection through Pseudo-Anomaly Awareness [10.364634539199422]
We introduce PA-CLIP, a zero-shot anomaly detection method that reduces background noise and enhances defect detection through a pseudo-anomaly-based framework.<n>The proposed method integrates a multiscale feature aggregation strategy for capturing detailed global and local information.<n>It outperforms existing zero-shot methods, providing a robust solution for industrial defect detection.
arXiv Detail & Related papers (2025-03-03T08:29:27Z) - YOLO-pdd: A Novel Multi-scale PCB Defect Detection Method Using Deep Representations with Sequential Images [7.368447690189973]
This paper proposes a high-precision, robust, and real-time end-to-end method for PCB defect detection based on CNN.
We propose a novel approach combining YOLOv5 and multiscale modules for hierarchical residual-like connections.
Experiments on a large-scale PCB dataset demonstrate significant improvements in precision, recall, and F1-score compared to existing methods.
arXiv Detail & Related papers (2024-07-22T07:08:22Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
We develop a Global Context Aggregation Network (GCANet) for lightweight saliency detection of surface defects on the encoder-decoder structure.
First, we introduce a novel transformer encoder on the top layer of the lightweight backbone, which captures global context information through a novel Depth-wise Self-Attention (DSA) module.
The experimental results on three public defect datasets demonstrate that the proposed network achieves a better trade-off between accuracy and running efficiency compared with other 17 state-of-the-art methods.
arXiv Detail & Related papers (2023-09-22T06:19:11Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Lightweight wood panel defect detection method incorporating attention
mechanism and feature fusion network [9.775181958901326]
We propose a lightweight wood panel defect detection method called YOLOv5-LW, which incorporates attention mechanisms and a feature fusion network.
The proposed method achieves a 92.8% accuracy rate, reduces the number of parameters by 27.78%, compresses computational volume by 41.25%, improves detection inference speed by 10.16%.
arXiv Detail & Related papers (2023-06-21T08:55:45Z) - Reference-Based Autoencoder for Surface Defect Detection [7.163582730053925]
We propose a novel unsupervised reference-based autoencoder (RB-AE) to accurately inspect a variety of textured defects.
artificial defects and a novel pixel-level discrimination loss function are utilized for training to enable the model to obtain pixel-level discrimination ability.
arXiv Detail & Related papers (2022-11-18T07:13:55Z) - A Feature Memory Rearrangement Network for Visual Inspection of Textured
Surface Defects Toward Edge Intelligent Manufacturing [4.33060257697635]
We propose an unsupervised feature memory rearrangement network (FMR-Net) to accurately detect various textural defects simultaneously.
We use artificial synthetic defects to enable the model to recognize anomalies, while traditional wisdom relies only on defect-free samples.
FMR-Net exhibits state-of-the-art inspection accuracy and shows great potential for use in edge-computing-enabled smart industries.
arXiv Detail & Related papers (2022-06-22T04:05:13Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
We propose SALISA, a novel non-uniform SALiency-based Input SAmpling technique for video object detection.
We show that SALISA significantly improves the detection of small objects.
arXiv Detail & Related papers (2022-04-05T17:59:51Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
We propose a design paradigm for cost-effective network with LR representation for efficient pose estimation, named FasterPose.
We study the training behavior of FasterPose, and formulate a novel regressive cross-entropy (RCE) loss function for accelerating the convergence.
Compared with the previously dominant network of pose estimation, our method reduces 58% of the FLOPs and simultaneously gains 1.3% improvement of accuracy.
arXiv Detail & Related papers (2021-07-07T13:39:08Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.