YOLO-pdd: A Novel Multi-scale PCB Defect Detection Method Using Deep Representations with Sequential Images
- URL: http://arxiv.org/abs/2407.15427v1
- Date: Mon, 22 Jul 2024 07:08:22 GMT
- Title: YOLO-pdd: A Novel Multi-scale PCB Defect Detection Method Using Deep Representations with Sequential Images
- Authors: Bowen Liu, Dongjie Chen, Xiao Qi,
- Abstract summary: This paper proposes a high-precision, robust, and real-time end-to-end method for PCB defect detection based on CNN.
We propose a novel approach combining YOLOv5 and multiscale modules for hierarchical residual-like connections.
Experiments on a large-scale PCB dataset demonstrate significant improvements in precision, recall, and F1-score compared to existing methods.
- Score: 7.368447690189973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid growth of the PCB manufacturing industry, there is an increasing demand for computer vision inspection to detect defects during production. Improving the accuracy and generalization of PCB defect detection models remains a significant challenge. This paper proposes a high-precision, robust, and real-time end-to-end method for PCB defect detection based on deep Convolutional Neural Networks (CNN). Traditional methods often suffer from low accuracy and limited applicability. We propose a novel approach combining YOLOv5 and multiscale modules for hierarchical residual-like connections. In PCB defect detection, noise can confuse the background and small targets. The YOLOv5 model provides a strong foundation with its real-time processing and accurate object detection capabilities. The multi-scale module extends traditional approaches by incorporating hierarchical residual-like connections within a single block, enabling multiscale feature extraction. This plug-and-play module significantly enhances performance by extracting features at multiple scales and levels, which are useful for identifying defects of varying sizes and complexities. Our multi-scale architecture integrates feature extraction, defect localization, and classification into a unified network. Experiments on a large-scale PCB dataset demonstrate significant improvements in precision, recall, and F1-score compared to existing methods. This work advances computer vision inspection for PCB defect detection, providing a reliable solution for high-precision, robust, real-time, and domain-adaptive defect detection in the PCB manufacturing industry.
Related papers
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - DANet: Enhancing Small Object Detection through an Efficient Deformable
Attention Network [0.0]
We propose a comprehensive strategy by synergizing Faster R-CNN with cutting-edge methods.
By combining Faster R-CNN with Feature Pyramid Network, we enable the model to handle multi-scale features intrinsic to manufacturing environments.
Deformable Net is used that contorts and conforms to the geometric variations of defects, bringing precision in detecting even the minuscule and complex features.
arXiv Detail & Related papers (2023-10-09T14:54:37Z) - CINFormer: Transformer network with multi-stage CNN feature injection
for surface defect segmentation [73.02218479926469]
We propose a transformer network with multi-stage CNN feature injection for surface defect segmentation.
CINFormer presents a simple yet effective feature integration mechanism that injects the multi-level CNN features of the input image into different stages of the transformer network in the encoder.
In addition, CINFormer presents a Top-K self-attention module to focus on tokens with more important information about the defects.
arXiv Detail & Related papers (2023-09-22T06:12:02Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - SEMI-DiffusionInst: A Diffusion Model Based Approach for Semiconductor
Defect Classification and Segmentation [0.11999555634662631]
This work is the first demonstration to accurately detect and precisely segment semiconductor defect patterns by using a diffusion model.
Our proposed approach outperforms previous work on overall mAP and performs comparatively better or as per for almost all defect classes.
arXiv Detail & Related papers (2023-07-17T17:53:36Z) - Lightweight wood panel defect detection method incorporating attention
mechanism and feature fusion network [9.775181958901326]
We propose a lightweight wood panel defect detection method called YOLOv5-LW, which incorporates attention mechanisms and a feature fusion network.
The proposed method achieves a 92.8% accuracy rate, reduces the number of parameters by 27.78%, compresses computational volume by 41.25%, improves detection inference speed by 10.16%.
arXiv Detail & Related papers (2023-06-21T08:55:45Z) - PCBDet: An Efficient Deep Neural Network Object Detection Architecture
for Automatic PCB Component Detection on the Edge [48.7576911714538]
PCBDet is an attention condenser network design that provides state-of-the-art inference throughput.
It achieves superior PCB component detection performance compared to other state-of-the-art efficient architecture designs.
arXiv Detail & Related papers (2023-01-23T04:34:25Z) - Reference-Based Autoencoder for Surface Defect Detection [7.163582730053925]
We propose a novel unsupervised reference-based autoencoder (RB-AE) to accurately inspect a variety of textured defects.
artificial defects and a novel pixel-level discrimination loss function are utilized for training to enable the model to obtain pixel-level discrimination ability.
arXiv Detail & Related papers (2022-11-18T07:13:55Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - A Feature Memory Rearrangement Network for Visual Inspection of Textured
Surface Defects Toward Edge Intelligent Manufacturing [4.33060257697635]
We propose an unsupervised feature memory rearrangement network (FMR-Net) to accurately detect various textural defects simultaneously.
We use artificial synthetic defects to enable the model to recognize anomalies, while traditional wisdom relies only on defect-free samples.
FMR-Net exhibits state-of-the-art inspection accuracy and shows great potential for use in edge-computing-enabled smart industries.
arXiv Detail & Related papers (2022-06-22T04:05:13Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.