Asymmetric Lesion Detection with Geometric Patterns and CNN-SVM Classification
- URL: http://arxiv.org/abs/2507.17185v1
- Date: Wed, 23 Jul 2025 04:17:57 GMT
- Title: Asymmetric Lesion Detection with Geometric Patterns and CNN-SVM Classification
- Authors: M. A. Rasel, Sameem Abdul Kareem, Zhenli Kwan, Nik Aimee Azizah Faheem, Winn Hui Han, Rebecca Kai Jan Choong, Shin Shen Yong, Unaizah Obaidellah,
- Abstract summary: In clinically practiced methods, asymmetric lesion shape is one of the criteria for diagnosing melanoma.<n>We propose a supporting technique, a supervised learning image processing algorithm, to analyze the geometrical pattern of lesion shape.<n>We then utilize a pre-trained convolutional neural network (CNN) to extract shape, color, and texture features from dermoscopic images.
- Score: 0.8733016359948068
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In dermoscopic images, which allow visualization of surface skin structures not visible to the naked eye, lesion shape offers vital insights into skin diseases. In clinically practiced methods, asymmetric lesion shape is one of the criteria for diagnosing melanoma. Initially, we labeled data for a non-annotated dataset with symmetrical information based on clinical assessments. Subsequently, we propose a supporting technique, a supervised learning image processing algorithm, to analyze the geometrical pattern of lesion shape, aiding non-experts in understanding the criteria of an asymmetric lesion. We then utilize a pre-trained convolutional neural network (CNN) to extract shape, color, and texture features from dermoscopic images for training a multiclass support vector machine (SVM) classifier, outperforming state-of-the-art methods from the literature. In the geometry-based experiment, we achieved a 99.00% detection rate for dermatological asymmetric lesions. In the CNN-based experiment, the best performance is found with 94% Kappa Score, 95% Macro F1-score, and 97% Weighted F1-score for classifying lesion shapes (Asymmetric, Half-Symmetric, and Symmetric).
Related papers
- Symmetry Awareness Encoded Deep Learning Framework for Brain Imaging Analysis [17.96729816246268]
This study introduces a novel approach leveraging the inherent symmetrical anatomical features of the human brain to enhance the subsequent detection and segmentation analysis for brain diseases.
A novel Symmetry-Aware Cross-Attention (SACA) module is proposed to encode symmetrical features of left and right hemispheres, and a proxy task to detect symmetrical features as the Symmetry-Aware Head (SAH) is proposed.
Our findings advocate for the effectiveness of incorporating symmetry awareness into pretraining and set a new benchmark for medical imaging analysis, promising significant strides toward accurate and efficient diagnostic processes.
arXiv Detail & Related papers (2024-07-12T03:08:15Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
During X-ray computed tomography (CT) scanning, metallic implants carrying with patients often lead to adverse artifacts.
Existing deep-learning-based methods have gained promising reconstruction performance.
We propose an orientation-shared convolution representation strategy to adapt the physical prior structures of artifacts.
arXiv Detail & Related papers (2022-12-26T13:56:12Z) - Beyond CNNs: Exploiting Further Inherent Symmetries in Medical Image
Segmentation [21.6412682130116]
We propose a novel group equivariant segmentation framework by encoding those inherent symmetries for learning more precise representations.
Based on our novel framework, extensive experiments conducted on real-world clinical data demonstrate that a Group Equivariant Res-UNet (named GER-UNet) outperforms its regular CNN-based counterpart.
The newly built GER-UNet also shows potential in reducing the sample complexity and the redundancy of filters.
arXiv Detail & Related papers (2022-07-29T04:28:20Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Symmetry-Enhanced Attention Network for Acute Ischemic Infarct
Segmentation with Non-Contrast CT Images [50.55978219682419]
We propose a symmetry enhanced attention network (SEAN) for acute ischemic infarct segmentation.
Our proposed network automatically transforms an input CT image into the standard space where the brain tissue is bilaterally symmetric.
The proposed SEAN outperforms some symmetry-based state-of-the-art methods in terms of both dice coefficient and infarct localization.
arXiv Detail & Related papers (2021-10-11T07:13:26Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Transfer Learning with Ensembles of Deep Neural Networks for Skin Cancer
Classification in Imbalanced Data Sets [0.6802401545890961]
Machine learning techniques for accurate classification of skin cancer from medical images have been reported.
Many techniques are based on pre-trained convolutional neural networks (CNNs), which enable training the models based on limited amounts of training data.
We propose a novel ensemble-based CNN architecture where multiple CNN models, some of which are pre-trained and some are trained only on the data at hand, along with patient information (meta-data) are combined using a meta-learner.
arXiv Detail & Related papers (2021-03-22T06:04:45Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Anatomy-Aware Siamese Network: Exploiting Semantic Asymmetry for
Accurate Pelvic Fracture Detection in X-ray Images [36.35987775099686]
We propose a novel fracture detection framework that builds upon a Siamese network enhanced with a spatial transformer layer.
Our proposed method have been extensively evaluated on 2,359 PXRs from unique patients.
This is the highest among state-of-the-art fracture detection methods, with improved clinical indications.
arXiv Detail & Related papers (2020-07-03T02:33:24Z) - Appearance Learning for Image-based Motion Estimation in Tomography [60.980769164955454]
In tomographic imaging, anatomical structures are reconstructed by applying a pseudo-inverse forward model to acquired signals.
Patient motion corrupts the geometry alignment in the reconstruction process resulting in motion artifacts.
We propose an appearance learning approach recognizing the structures of rigid motion independently from the scanned object.
arXiv Detail & Related papers (2020-06-18T09:49:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.