MaskedCLIP: Bridging the Masked and CLIP Space for Semi-Supervised Medical Vision-Language Pre-training
- URL: http://arxiv.org/abs/2507.17239v1
- Date: Wed, 23 Jul 2025 06:15:54 GMT
- Title: MaskedCLIP: Bridging the Masked and CLIP Space for Semi-Supervised Medical Vision-Language Pre-training
- Authors: Lei Zhu, Jun Zhou, Rick Siow Mong Goh, Yong Liu,
- Abstract summary: State-of-the-art methods leverage either paired image-text data via vision-language pre-training or unpaired image data via self-supervised pre-training to learn foundation models.<n>We propose MaskedCLIP, a synergistic masked image modeling and contrastive language-image pre-training framework.
- Score: 27.35164449801058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundation models have recently gained tremendous popularity in medical image analysis. State-of-the-art methods leverage either paired image-text data via vision-language pre-training or unpaired image data via self-supervised pre-training to learn foundation models with generalizable image features to boost downstream task performance. However, learning foundation models exclusively on either paired or unpaired image data limits their ability to learn richer and more comprehensive image features. In this paper, we investigate a novel task termed semi-supervised vision-language pre-training, aiming to fully harness the potential of both paired and unpaired image data for foundation model learning. To this end, we propose MaskedCLIP, a synergistic masked image modeling and contrastive language-image pre-training framework for semi-supervised vision-language pre-training. The key challenge in combining paired and unpaired image data for learning a foundation model lies in the incompatible feature spaces derived from these two types of data. To address this issue, we propose to connect the masked feature space with the CLIP feature space with a bridge transformer. In this way, the more semantic specific CLIP features can benefit from the more general masked features for semantic feature extraction. We further propose a masked knowledge distillation loss to distill semantic knowledge of original image features in CLIP feature space back to the predicted masked image features in masked feature space. With this mutually interactive design, our framework effectively leverages both paired and unpaired image data to learn more generalizable image features for downstream tasks. Extensive experiments on retinal image analysis demonstrate the effectiveness and data efficiency of our method.
Related papers
- CLIP-IT: CLIP-based Pairing for Histology Images Classification [6.855390956571216]
We introduce CLIP-IT to train a vision backbone model to classify histology images by pairing them with privileged textual information from an external source.<n>At first, the modality pairing step relies on a CLIP-based model to match histology images with semantically relevant textual report data from external sources, creating an augmented multimodal dataset.<n>A parameter-efficient fine-tuning method is used to efficiently address the misalignment between the main (image) and paired (text) modalities.
arXiv Detail & Related papers (2025-04-22T18:14:43Z) - Evolved Hierarchical Masking for Self-Supervised Learning [49.77271430882176]
Existing Masked Image Modeling methods apply fixed mask patterns to guide the self-supervised training.<n>This paper introduces an evolved hierarchical masking method to pursue general visual cues modeling in self-supervised learning.
arXiv Detail & Related papers (2025-04-12T09:40:14Z) - MMCLIP: Cross-modal Attention Masked Modelling for Medical Language-Image Pre-Training [29.02600107837688]
This paper proposes the MMCLIP (Masked Medical Contrastive Language-Image Pre-Training) framework to enhance pathological learning.<n>First, we introduce the attention-masked image modeling (AttMIM) and entity-driven masked language modeling module (EntMLM)<n>Second, our MMCLIP capitalizes unpaired data to enhance multimodal learning by introducing disease-kind prompts.
arXiv Detail & Related papers (2024-07-28T17:38:21Z) - Vision Model Pre-training on Interleaved Image-Text Data via Latent Compression Learning [78.19528555505961]
We propose a novel vision model pre-training method called Latent Compression Learning (LCL) for interleaved image-text data.<n>The training objective can be decomposed into two basic tasks: 1) contrastive learning between visual representation and preceding context, and 2) generating subsequent text based on visual representation.<n>Our experiments demonstrate that our method not only matches the performance of CLIP on paired pre-training datasets, but can also leverage interleaved pre-training data.
arXiv Detail & Related papers (2024-06-11T17:59:35Z) - Composed Image Retrieval using Contrastive Learning and Task-oriented
CLIP-based Features [32.138956674478116]
Given a query composed of a reference image and a relative caption, the Composed Image Retrieval goal is to retrieve images visually similar to the reference one.
We use features from the OpenAI CLIP model to tackle the considered task.
We train a Combiner network that learns to combine the image-text features integrating the bimodal information.
arXiv Detail & Related papers (2023-08-22T15:03:16Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - MaskCLIP: Masked Self-Distillation Advances Contrastive Language-Image
Pretraining [138.86293836634323]
MaskCLIP incorporates a newly proposed masked self-distillation into contrastive language-image pretraining.
MaskCLIP achieves superior results in linear probing, finetuning, and zero-shot performance with the guidance of the language encoder.
arXiv Detail & Related papers (2022-08-25T17:59:58Z) - The Devil is in the Frequency: Geminated Gestalt Autoencoder for
Self-Supervised Visual Pre-Training [13.087987450384036]
We present a new Masked Image Modeling (MIM), termed Geminated Autoencoder (Ge$2$-AE) for visual pre-training.
Specifically, we equip our model with geminated decoders in charge of reconstructing image contents from both pixel and frequency space.
arXiv Detail & Related papers (2022-04-18T09:22:55Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - A Simple Baseline for Zero-shot Semantic Segmentation with Pre-trained
Vision-language Model [61.58071099082296]
It is unclear how to make zero-shot recognition working well on broader vision problems, such as object detection and semantic segmentation.
In this paper, we target for zero-shot semantic segmentation, by building it on an off-the-shelf pre-trained vision-language model, i.e., CLIP.
Our experimental results show that this simple framework surpasses previous state-of-the-arts by a large margin.
arXiv Detail & Related papers (2021-12-29T18:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.