論文の概要: Learning-based Stage Verification System in Manual Assembly Scenarios
- arxiv url: http://arxiv.org/abs/2507.17304v1
- Date: Wed, 23 Jul 2025 08:10:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 22:33:14.914233
- Title: Learning-based Stage Verification System in Manual Assembly Scenarios
- Title(参考訳): 手動組立シナリオにおける学習型ステージ検証システム
- Authors: Xingjian Zhang, Yutong Duan, Zaishu Chen,
- Abstract要約: 本研究では,最小限の視覚センサの使用制限下での正確なモニタリングを実現するための新しい手法を提案する。
同一のタイムスタンプからの状態情報を統合することで, 組立プロセスの現段階を92%を超える平均精度で検出し, 確認する。
- 参考スコア(独自算出の注目度): 2.517043342442487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the context of Industry 4.0, effective monitoring of multiple targets and states during assembly processes is crucial, particularly when constrained to using only visual sensors. Traditional methods often rely on either multiple sensor types or complex hardware setups to achieve high accuracy in monitoring, which can be cost-prohibitive and difficult to implement in dynamic industrial environments. This study presents a novel approach that leverages multiple machine learning models to achieve precise monitoring under the limitation of using a minimal number of visual sensors. By integrating state information from identical timestamps, our method detects and confirms the current stage of the assembly process with an average accuracy exceeding 92%. Furthermore, our approach surpasses conventional methods by offering enhanced error detection and visuali-zation capabilities, providing real-time, actionable guidance to operators. This not only improves the accuracy and efficiency of assembly monitoring but also re-duces dependency on expensive hardware solutions, making it a more practical choice for modern industrial applications.
- Abstract(参考訳): 産業4.0の文脈では、アセンブリプロセス中の複数のターゲットと状態の効果的な監視は、特に視覚センサーのみの使用に制約された場合、重要である。
従来の手法では、複数のセンサータイプまたは複雑なハードウェア構成に頼り、監視の精度が高く、動的産業環境ではコストが抑えられ、実装が困難である。
本研究では、複数の機械学習モデルを利用して、最小限の視覚センサの使用制限下での正確なモニタリングを実現する新しいアプローチを提案する。
同一のタイムスタンプからの状態情報を統合することで, 組立プロセスの現段階を92%を超える平均精度で検出し, 確認する。
さらに,提案手法は従来の手法を超越し,エラー検出と視覚変換機能を強化し,操作者に対してリアルタイムに動作可能なガイダンスを提供する。
これは、アセンブリ監視の精度と効率を向上するだけでなく、高価なハードウェアソリューションへの依存を再生成する。
関連論文リスト
- Optimizing Multispectral Object Detection: A Bag of Tricks and Comprehensive Benchmarks [49.84182981950623]
RGBおよびTIR(熱赤外)変調を利用したマルチスペクトル物体検出は,課題として広く認識されている。
モダリティと堅牢な融合戦略の両方から特徴を効果的に抽出するだけでなく、スペクトルの相違といった問題に対処する能力も必要である。
本稿では,高パフォーマンス単一モードモデルのシームレスな最適化が可能な,効率的かつ容易にデプロイ可能なマルチスペクトルオブジェクト検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-27T12:18:39Z) - Efficient Meta-Learning Enabled Lightweight Multiscale Few-Shot Object Detection in Remote Sensing Images [15.12889076965307]
YOLOv7ワンステージ検出器は、新しいメタラーニングトレーニングフレームワークが組み込まれている。
この変換により、検出器はFSODのタスクに十分対応できると同時に、その固有の軽量化の利点を活かすことができる。
提案検出器の有効性を検証するため, 現状の検出器と性能比較を行った。
論文 参考訳(メタデータ) (2024-04-29T04:56:52Z) - MTAD: Tools and Benchmarks for Multivariate Time Series Anomaly
Detection [34.81779490744863]
本稿では,12種類の最先端異常検出手法の総合的なレビューと評価を行う。
本研究では,種々の異常検出器の特性をよりよく理解するために,サリエンスと呼ばれる新しい指標を提案する。
本稿では, 産業展開において, 精度, サリエンス, 効率, 遅延の両面からベンチマーク結果を報告する。
論文 参考訳(メタデータ) (2024-01-10T06:50:25Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
本稿では,Deformable-DETR,UP-DETR,DINOのキャリブレーション検出トランス(Cal-DETR)のメカニズムを提案する。
我々は、不確実性を利用してクラスロジットを変調する不確実性誘導ロジット変調機構を開発する。
その結果、Cal-DETRは、ドメイン内およびドメイン外の両方を校正する競合する列車時間法に対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-11-06T22:13:10Z) - Contrastive Multi-Modal Representation Learning for Spark Plug Fault
Diagnosis [0.21847754147782888]
コントラッシブラーニングパラダイムに基づくユニークなトレーニング戦略を備えたマルチモーダルオートエンコーダを提案する。
提案手法は、データの複数モード(またはビュー)をリッチな共通表現に融合する際の優れた性能を実現する。
本手法により,センサ故障発生時のマルチモーダル故障診断システムをより堅牢に行うことができる。
論文 参考訳(メタデータ) (2023-11-04T00:04:09Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
本システムでは, コンデンサセンサからの信号を手の動き認識器に組み込んだ手動作認識システムを提案する。
コントローラは、着用者5本の指それぞれからリアルタイム信号を生成する。
機械学習技術を用いて時系列信号を解析し,500ms以内で5本の指を表現できる3つの特徴を同定する。
論文 参考訳(メタデータ) (2023-05-12T17:24:02Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
本稿では,高品質なサリエンシキューを効果的に生成する2段階アクティベーション・ツー・サリエンシ(A2S)フレームワークを提案する。
トレーニングプロセス全体において、私たちのフレームワークにヒューマンアノテーションは関与していません。
本フレームワークは,既存のUSOD法と比較して高い性能を示した。
論文 参考訳(メタデータ) (2021-12-07T11:54:06Z) - DeepTimeAnomalyViz: A Tool for Visualizing and Post-processing Deep
Learning Anomaly Detection Results for Industrial Time-Series [88.12892448747291]
DeTAVIZ インタフェースは Web ブラウザをベースとした可視化ツールで,特定の問題における DL ベースの異常検出の実現可能性の迅速な探索と評価を行う。
DeTAVIZを使えば、ユーザーは複数のポスト処理オプションを簡単かつ迅速に繰り返し、異なるモデルを比較することができ、選択したメトリックに対して手動で最適化できる。
論文 参考訳(メタデータ) (2021-09-21T10:38:26Z) - Machine Learning based Indicators to Enhance Process Monitoring by
Pattern Recognition [0.4893345190925177]
パターンタイプと強度を組み合わせた機械学習に基づく指標のための新しいフレームワークを提案する。
半導体産業のケーススタディでは,従来のプロセス制御を越え,高品質な実験結果を得る。
論文 参考訳(メタデータ) (2021-03-24T10:13:20Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
本研究では、より堅牢なマルチセンサ空間アライメントを実現するために、マーカーレスデータ駆動対応推定を改善する。
我々は、幾何学的制約を終末的に典型的なセグメンテーションベースモデルに組み込み、対象のポーズ推定タスクと中間密な分類タスクをブリッジする。
実験により,マーカーベースの手法で同様の結果が得られ,マーカーレス手法よりも優れ,またキャリブレーション構造のポーズ変動にも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-03-23T10:51:32Z) - Collaborative Inference for Efficient Remote Monitoring [34.27630312942825]
これをモデルレベルで解決するための簡単なアプローチは、より単純なアーキテクチャを使用することです。
本稿では,局所的なモニタリングツールとして機能する単純な関数の和として,予測モデルを分解した代替手法を提案する。
ローカル監視機能が安全であることを保証するために、後者にサイン要求が課される。
論文 参考訳(メタデータ) (2020-02-12T01:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。