Confidence Calibration in Vision-Language-Action Models
- URL: http://arxiv.org/abs/2507.17383v1
- Date: Wed, 23 Jul 2025 10:26:10 GMT
- Title: Confidence Calibration in Vision-Language-Action Models
- Authors: Thomas P Zollo, Richard Zemel,
- Abstract summary: Trustworthy robot behavior requires high levels of task success and reliably quantify how likely it is to succeed.<n>We present the first systematic study of confidence calibration in vision-language-action (VLA) foundation models.
- Score: 2.230383995796716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trustworthy robot behavior requires not only high levels of task success but also that the robot can reliably quantify how likely it is to succeed. To this end, we present the first systematic study of confidence calibration in vision-language-action (VLA) foundation models, which map visual observations and natural-language instructions to low-level robot motor commands. We begin with extensive benchmarking to understand the critical relationship between task success and calibration error across multiple datasets and VLA variants, finding that task performance and calibration are not in tension. Next, we introduce prompt ensembles for VLAs, a lightweight, Bayesian-inspired algorithm that averages confidence across paraphrased instructions and consistently improves calibration. We further analyze calibration over the task time horizon, showing that confidence is often most reliable after making some progress, suggesting natural points for risk-aware intervention. Finally, we reveal differential miscalibration across action dimensions and propose action-wise Platt scaling, a method to recalibrate each action dimension independently to produce better confidence estimates. Our aim in this study is to begin to develop the tools and conceptual understanding necessary to render VLAs both highly performant and highly trustworthy via reliable uncertainty quantification.
Related papers
- Verbalized Confidence Triggers Self-Verification: Emergent Behavior Without Explicit Reasoning Supervision [12.287123198288079]
Uncertainty calibration is essential for the safe deployment of large language models (LLMs)<n>We find that supervised fine-tuning with scalar confidence labels alone suffices to elicit self-verification behavior of language models.<n>We propose a simple rethinking method that boosts performance via test-time scaling based on calibrated uncertainty.
arXiv Detail & Related papers (2025-06-04T08:56:24Z) - Seeing is Believing, but How Much? A Comprehensive Analysis of Verbalized Calibration in Vision-Language Models [15.158475816860427]
Uncertainty is essential for assessing the reliability and trustworthiness of modern AI systems.<n> verbalized uncertainty, where models express their confidence through natural language, has emerged as a lightweight and interpretable solution.<n>However, its effectiveness in vision-language models (VLMs) remains insufficiently studied.
arXiv Detail & Related papers (2025-05-26T17:16:36Z) - Calibrating Uncertainty Quantification of Multi-Modal LLMs using Grounding [48.92310906093414]
We introduce a novel approach for calibrating uncertainty quantification (UQ) tailored for multi-modal large language models (LLMs)<n>We leverage cross-modal consistency in addition to self-consistency to improve the calibration of the multi-modal models.<n>We evaluate the proposed approach across multiple multi-modal tasks, such as medical question answering (Slake) and visual question answering (VQAv2), considering multi-modal models such as LLaVA-Med and LLaVA.
arXiv Detail & Related papers (2025-04-30T19:19:21Z) - Object-Level Verbalized Confidence Calibration in Vision-Language Models via Semantic Perturbation [26.580361841501514]
Vision-language models (VLMs) excel in various multimodal tasks but frequently suffer from poor calibration.<n>This miscalibration undermines user trust, especially when models confidently provide incorrect or fabricated information.<n>We propose a novel Confidence through Semantic Perturbation (CSP) framework to improve the calibration of verbalized confidence for object-centric queries.
arXiv Detail & Related papers (2025-04-21T04:01:22Z) - Graph-based Confidence Calibration for Large Language Models [22.394717844099684]
We propose using an auxiliary learning model to assess response correctness based on the self-consistency of multiple outputs generated by the large language models.<n>Our method builds a consistency graph to represent the agreement among multiple responses and uses a graph neural network (GNN) to estimate the likelihood that each response is correct.
arXiv Detail & Related papers (2024-11-03T20:36:44Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
Miscalibration in deep learning refers to there is a discrepancy between the predicted confidence and performance.
We introduce Dynamic Regularization (DReg) which aims to learn what should be learned during training thereby circumventing the confidence adjusting trade-off.
arXiv Detail & Related papers (2024-02-13T11:25:20Z) - On the Calibration of Large Language Models and Alignment [63.605099174744865]
Confidence calibration serves as a crucial tool for gauging the reliability of deep models.
We conduct a systematic examination of the calibration of aligned language models throughout the entire construction process.
Our work sheds light on whether popular LLMs are well-calibrated and how the training process influences model calibration.
arXiv Detail & Related papers (2023-11-22T08:57:55Z) - A Survey of Confidence Estimation and Calibration in Large Language Models [86.692994151323]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks in various domains.
Despite their impressive performance, they can be unreliable due to factual errors in their generations.
Assessing their confidence and calibrating them across different tasks can help mitigate risks and enable LLMs to produce better generations.
arXiv Detail & Related papers (2023-11-14T16:43:29Z) - Towards Calibrated Robust Fine-Tuning of Vision-Language Models [97.19901765814431]
This work proposes a robust fine-tuning method that improves both OOD accuracy and confidence calibration simultaneously in vision language models.
We show that both OOD classification and OOD calibration errors have a shared upper bound consisting of two terms of ID data.
Based on this insight, we design a novel framework that conducts fine-tuning with a constrained multimodal contrastive loss enforcing a larger smallest singular value.
arXiv Detail & Related papers (2023-11-03T05:41:25Z) - An evaluation of word-level confidence estimation for end-to-end
automatic speech recognition [70.61280174637913]
We investigate confidence estimation for end-to-end automatic speech recognition (ASR)
We provide an extensive benchmark of popular confidence methods on four well-known speech datasets.
Our results suggest a strong baseline can be obtained by scaling the logits by a learnt temperature.
arXiv Detail & Related papers (2021-01-14T09:51:59Z) - Uncertainty-sensitive Activity Recognition: a Reliability Benchmark and
the CARING Models [37.60817779613977]
We present the first study of how welthe confidence values of modern action recognition architectures indeed reflect the probability of the correct outcome.
We introduce a new approach which learns to transform the model output into realistic confidence estimates through an additional calibration network.
arXiv Detail & Related papers (2021-01-02T15:41:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.