論文の概要: Ctx2TrajGen: Traffic Context-Aware Microscale Vehicle Trajectories using Generative Adversarial Imitation Learning
- arxiv url: http://arxiv.org/abs/2507.17418v1
- Date: Wed, 23 Jul 2025 11:21:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 22:33:14.971135
- Title: Ctx2TrajGen: Traffic Context-Aware Microscale Vehicle Trajectories using Generative Adversarial Imitation Learning
- Title(参考訳): Ctx2TrajGen:生成的対向模倣学習を用いた交通環境を考慮したマイクロスケール車両軌道
- Authors: Joobin Jin, Seokjun Hong, Gyeongseon Baek, Yeeun Kim, Byeongjoon Noh,
- Abstract要約: Ctx2TrajGenは、GAILを用いて現実的な都市走行挙動を合成する文脈対応トラジェクトリ生成フレームワークである。
Ctx2TrajGenは、周囲の車両と道路形状を明示的に条件付けすることで、現実世界のコンテキストに合わせて対話対応の軌道を生成する。
- 参考スコア(独自算出の注目度): 1.2023648183416153
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Precise modeling of microscopic vehicle trajectories is critical for traffic behavior analysis and autonomous driving systems. We propose Ctx2TrajGen, a context-aware trajectory generation framework that synthesizes realistic urban driving behaviors using GAIL. Leveraging PPO and WGAN-GP, our model addresses nonlinear interdependencies and training instability inherent in microscopic settings. By explicitly conditioning on surrounding vehicles and road geometry, Ctx2TrajGen generates interaction-aware trajectories aligned with real-world context. Experiments on the drone-captured DRIFT dataset demonstrate superior performance over existing methods in terms of realism, behavioral diversity, and contextual fidelity, offering a robust solution to data scarcity and domain shift without simulation.
- Abstract(参考訳): 微視的車両軌道の精密モデリングは交通行動解析や自律運転システムにおいて重要である。
Ctx2TrajGenは,GAILを用いて現実的な都市走行挙動を合成するコンテキスト対応トラジェクトリ生成フレームワークである。
PPOとWGAN-GPを活用することで、非線形相互依存性と微視的環境に固有のトレーニング不安定性に対処する。
Ctx2TrajGenは、周囲の車両と道路形状を明示的に条件付けすることで、現実世界のコンテキストに合わせて対話対応の軌道を生成する。
ドローンでキャプチャしたDRIFTデータセットの実験は、現実主義、行動多様性、コンテキスト忠実性の点で既存の手法よりも優れたパフォーマンスを示し、シミュレーションなしでデータの不足やドメインシフトに対する堅牢な解決策を提供する。
関連論文リスト
- InfGen: Scenario Generation as Next Token Group Prediction [49.54222089551598]
InfGenは、エージェント状態とトラジェクトリを自動回帰的に出力するシナリオ生成フレームワークである。
実験により、InfGenは現実的で多様性があり、適応的な交通行動を生み出すことが示された。
論文 参考訳(メタデータ) (2025-06-29T16:18:32Z) - FollowGen: A Scaled Noise Conditional Diffusion Model for Car-Following Trajectory Prediction [9.2729178775419]
本研究では,自動車追従軌道予測のためのスケールドノイズ条件拡散モデルを提案する。
車両間の詳細な相互作用と自動車追従ダイナミクスを生成フレームワークに統合し、予測された軌跡の精度と妥当性を向上させる。
種々の実世界の運転シナリオに関する実験結果は,提案手法の最先端性能と堅牢性を示すものである。
論文 参考訳(メタデータ) (2024-11-23T23:13:45Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Graph-Based Interaction-Aware Multimodal 2D Vehicle Trajectory
Prediction using Diffusion Graph Convolutional Networks [17.989423104706397]
本研究では,グラフに基づく対話型多モード軌道予測フレームワークを提案する。
このフレームワーク内では、車両の動きは時間変化グラフのノードとして概念化され、交通相互作用は動的隣接行列によって表現される。
我々は、意図特異的な特徴融合を採用し、歴史的および将来の埋め込みの適応的な統合を可能にする。
論文 参考訳(メタデータ) (2023-09-05T06:28:13Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Context-Aware Timewise VAEs for Real-Time Vehicle Trajectory Prediction [4.640835690336652]
マルチモーダル車軌道予測のためのコンテキスト認識手法であるContextVAEを提案する。
本手法は,現場のエージェントが提示する社会的特徴と,身体環境の制約を考慮に入れたものである。
すべてのテストデータセットにおいて、ContextVAEモデルはトレーニングが高速で、リアルタイムに高品質なマルチモーダル予測を提供する。
論文 参考訳(メタデータ) (2023-02-21T18:42:24Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - BITS: Bi-level Imitation for Traffic Simulation [38.28736985320897]
データ駆動型アプローチを採用し,実世界の走行ログから交通挙動を学習する手法を提案する。
我々は,2つの大規模運転データセットのシナリオを用いて,BITS(Bi-level Imitation for Traffic Simulation)という手法を実証的に検証した。
コアコントリビューションの一環として、さまざまな駆動データセットにまたがるデータフォーマットを統合するソフトウェアツールを開発し、オープンソース化しています。
論文 参考訳(メタデータ) (2022-08-26T02:17:54Z) - TrajGen: Generating Realistic and Diverse Trajectories with Reactive and
Feasible Agent Behaviors for Autonomous Driving [19.06020265777298]
既存のシミュレーターは、背景車両のシステムに基づく行動モデルに依存しており、現実のシナリオにおける複雑なインタラクティブな振る舞いを捉えることはできない。
そこで我々は,人間の実演からより現実的な行動を直接捉えることができる2段階の軌道生成フレームワークであるTrajGenを提案する。
また,データ駆動型シミュレータI-Simを開発した。
論文 参考訳(メタデータ) (2022-03-31T04:48:29Z) - Objective-aware Traffic Simulation via Inverse Reinforcement Learning [31.26257563160961]
逆強化学習問題として交通シミュレーションを定式化する。
動的ロバストシミュレーション学習のためのパラメータ共有逆強化学習モデルを提案する。
提案モデルでは,実世界の車両の軌道を模倣し,同時に報酬関数を復元することができる。
論文 参考訳(メタデータ) (2021-05-20T07:26:34Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z) - SceneGen: Learning to Generate Realistic Traffic Scenes [92.98412203941912]
私たちは、ルールと分布の必要性を緩和するトラフィックシーンのニューラルオートレグレッシブモデルであるSceneGenを紹介します。
実トラフィックシーンの分布を忠実にモデル化するSceneGenの能力を実証する。
論文 参考訳(メタデータ) (2021-01-16T22:51:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。