To Trust or Not to Trust: On Calibration in ML-based Resource Allocation for Wireless Networks
- URL: http://arxiv.org/abs/2507.17494v1
- Date: Wed, 23 Jul 2025 13:23:43 GMT
- Title: To Trust or Not to Trust: On Calibration in ML-based Resource Allocation for Wireless Networks
- Authors: Rashika Raina, Nidhi Simmons, David E. Simmons, Michel Daoud Yacoub, Trung Q. Duong,
- Abstract summary: This paper studies the calibration performance of an ML-based outage predictor within a single-user, multi-resource allocation framework.<n>We first establish key theoretical properties of this system's outage probability (OP) under perfect calibration.<n>We show that as the number of resources grows, the OP of a perfectly calibrated predictor approaches the expected output conditioned on it being below the classification threshold.
- Score: 11.718895971015339
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In next-generation communications and networks, machine learning (ML) models are expected to deliver not only accurate predictions but also well-calibrated confidence scores that reflect the true likelihood of correct decisions. This paper studies the calibration performance of an ML-based outage predictor within a single-user, multi-resource allocation framework. We first establish key theoretical properties of this system's outage probability (OP) under perfect calibration. Importantly, we show that as the number of resources grows, the OP of a perfectly calibrated predictor approaches the expected output conditioned on it being below the classification threshold. In contrast, when only one resource is available, the system's OP equals the model's overall expected output. We then derive the OP conditions for a perfectly calibrated predictor. These findings guide the choice of the classification threshold to achieve a desired OP, helping system designers meet specific reliability requirements. We also demonstrate that post-processing calibration cannot improve the system's minimum achievable OP, as it does not introduce new information about future channel states. Additionally, we show that well-calibrated models are part of a broader class of predictors that necessarily improve OP. In particular, we establish a monotonicity condition that the accuracy-confidence function must satisfy for such improvement to occur. To demonstrate these theoretical properties, we conduct a rigorous simulation-based analysis using post-processing calibration techniques: Platt scaling and isotonic regression. As part of this framework, the predictor is trained using an outage loss function specifically designed for this system. Furthermore, this analysis is performed on Rayleigh fading channels with temporal correlation captured by Clarke's 2D model, which accounts for receiver mobility.
Related papers
- Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
Retraining a model using its own predictions together with the original, potentially noisy labels is a well-known strategy for improving the model performance.<n>This paper addresses the question of how to optimally combine the model's predictions and the provided labels.<n>Our main contribution is the derivation of the Bayes optimal aggregator function to combine the current model's predictions and the given labels.
arXiv Detail & Related papers (2025-05-21T07:16:44Z) - Unconstrained Monotonic Calibration of Predictions in Deep Ranking Systems [29.90543561470141]
A ranking model's absolute values are essential for certain downstream tasks.<n>Existing calibration approaches typically employ predefined transformation functions with order-preserving properties to adjust the original predictions.<n>We propose implementing a calibrator using an Unconstrained Monotonic Neural Network (UMNN), which can learn arbitrary monotonic functions.<n>This approach significantly relaxes the constraints on the calibrator, improving its flexibility and expressiveness while avoiding excessively distorting the original predictions.
arXiv Detail & Related papers (2025-04-19T09:35:11Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.<n>We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.<n>Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Instant Uncertainty Calibration of NeRFs Using a Meta-calibrator [60.47106421809998]
We introduce the concept of a meta-calibrator that performs uncertainty calibration for NeRFs with a single forward pass.
We show that the meta-calibrator can generalize on unseen scenes and achieves well-calibrated and state-of-the-art uncertainty for NeRFs.
arXiv Detail & Related papers (2023-12-04T21:29:31Z) - Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
Recent studies reveal that deep neural networks (DNNs) are prone to making overconfident predictions.
We propose a new train-time calibration method, which features a simple, plug-and-play auxiliary loss known as multi-class alignment of predictive mean confidence and predictive certainty (MACC)
Our method achieves state-of-the-art calibration performance for both in-domain and out-domain predictions.
arXiv Detail & Related papers (2023-09-06T00:56:24Z) - When Does Confidence-Based Cascade Deferral Suffice? [69.28314307469381]
Cascades are a classical strategy to enable inference cost to vary adaptively across samples.
A deferral rule determines whether to invoke the next classifier in the sequence, or to terminate prediction.
Despite being oblivious to the structure of the cascade, confidence-based deferral often works remarkably well in practice.
arXiv Detail & Related papers (2023-07-06T04:13:57Z) - Outage Performance and Novel Loss Function for an ML-Assisted Resource
Allocation: An Exact Analytical Framework [2.1397655110395752]
We introduce a novel loss function to minimize the outage probability of an ML-based resource allocation system.
An ML binary classification predictor assists in selecting a resource satisfying the established outage criterium.
arXiv Detail & Related papers (2023-05-16T18:23:52Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - Posterior Probability Matters: Doubly-Adaptive Calibration for Neural Predictions in Online Advertising [29.80454356173723]
Field-level calibration is fine-grained and more practical.
AdaCalib learns an isotonic function family to calibrate model predictions.
Experiments verify that AdaCalib achieves significant improvement on calibration performance.
arXiv Detail & Related papers (2022-05-15T14:27:19Z) - Bayesian Confidence Calibration for Epistemic Uncertainty Modelling [4.358626952482686]
We introduce a framework to obtain confidence estimates in conjunction with an uncertainty of the calibration method.
We achieve state-of-the-art calibration performance for object detection calibration.
arXiv Detail & Related papers (2021-09-21T10:53:16Z) - On the Dark Side of Calibration for Modern Neural Networks [65.83956184145477]
We show the breakdown of expected calibration error (ECE) into predicted confidence and refinement.
We highlight that regularisation based calibration only focuses on naively reducing a model's confidence.
We find that many calibration approaches with the likes of label smoothing, mixup etc. lower the utility of a DNN by degrading its refinement.
arXiv Detail & Related papers (2021-06-17T11:04:14Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.