Illicit object detection in X-ray imaging using deep learning techniques: A comparative evaluation
- URL: http://arxiv.org/abs/2507.17508v1
- Date: Wed, 23 Jul 2025 13:47:33 GMT
- Title: Illicit object detection in X-ray imaging using deep learning techniques: A comparative evaluation
- Authors: Jorgen Cani, Christos Diou, Spyridon Evangelatos, Vasileios Argyriou, Panagiotis Radoglou-Grammatikis, Panagiotis Sarigiannidis, Iraklis Varlamis, Georgios Th. Papadopoulos,
- Abstract summary: Automated X-ray inspection is crucial for efficient and unobtrusive security screening in various public settings.<n>Despite the large body of research in the field, reported experimental evaluations are often incomplete.<n>To shed light on the research landscape and facilitate further research, a systematic, detailed, and comparative evaluation of recent Deep Learning (DL)-based methods for X-ray object detection is conducted.
- Score: 9.33554429903529
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated X-ray inspection is crucial for efficient and unobtrusive security screening in various public settings. However, challenges such as object occlusion, variations in the physical properties of items, diversity in X-ray scanning devices, and limited training data hinder accurate and reliable detection of illicit items. Despite the large body of research in the field, reported experimental evaluations are often incomplete, with frequently conflicting outcomes. To shed light on the research landscape and facilitate further research, a systematic, detailed, and thorough comparative evaluation of recent Deep Learning (DL)-based methods for X-ray object detection is conducted. For this, a comprehensive evaluation framework is developed, composed of: a) Six recent, large-scale, and widely used public datasets for X-ray illicit item detection (OPIXray, CLCXray, SIXray, EDS, HiXray, and PIDray), b) Ten different state-of-the-art object detection schemes covering all main categories in the literature, including generic Convolutional Neural Network (CNN), custom CNN, generic transformer, and hybrid CNN-transformer architectures, and c) Various detection (mAP50 and mAP50:95) and time/computational-complexity (inference time (ms), parameter size (M), and computational load (GFLOPS)) metrics. A thorough analysis of the results leads to critical observations and insights, emphasizing key aspects such as: a) Overall behavior of the object detection schemes, b) Object-level detection performance, c) Dataset-specific observations, and d) Time efficiency and computational complexity analysis. To support reproducibility of the reported experimental results, the evaluation code and model weights are made publicly available at https://github.com/jgenc/xray-comparative-evaluation.
Related papers
- Hyperspectral Anomaly Detection Methods: A Survey and Comparative Study [1.074960192271861]
Hyperspectral anomaly detection (HAD) refers to the technique of identifying and locating anomalous targets in such data without prior information about a hyperspectral scene or target spectrum.<n>This study presents a comprehensive comparison of various HAD techniques, categorising them into statistical models, representation-based methods, classical machine learning approaches, and deep learning models.<n>Our findings highlight that deep learning models achieved the highest detection accuracy, while statistical models demonstrated exceptional speed across all datasets.
arXiv Detail & Related papers (2025-07-08T07:23:24Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper proposes a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.<n>The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.<n>We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
We show that a deep learning model performing well when tested on the same dataset as training data starts to perform poorly when it is tested on a dataset from a different source.
By employing an adversarial training strategy, we show that a network can be forced to learn a source-invariant representation.
arXiv Detail & Related papers (2020-08-04T07:41:15Z) - BS-Net: learning COVID-19 pneumonia severity on a large Chest X-Ray
dataset [6.5800499500032705]
We design an end-to-end deep learning architecture for predicting, on Chest X-rays images (CXR), a multi-regional score conveying the degree of lung compromise in COVID-19 patients.
We exploit a clinical dataset of almost 5,000 CXR annotated images collected in the same hospital.
Our solution outperforms single human annotators in rating accuracy and consistency.
arXiv Detail & Related papers (2020-06-08T13:55:58Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - An Extensive Study on Cross-Dataset Bias and Evaluation Metrics
Interpretation for Machine Learning applied to Gastrointestinal Tract
Abnormality Classification [2.985964157078619]
Automatic analysis of diseases in the GI tract is a hot topic in computer science and medical-related journals.
A clear understanding of evaluation metrics and machine learning models with cross datasets is crucial to bring research in the field to a new quality level.
We present comprehensive evaluations of five distinct machine learning models that can classify 16 different GI tract conditions.
arXiv Detail & Related papers (2020-05-08T08:59:31Z) - Occluded Prohibited Items Detection: an X-ray Security Inspection
Benchmark and De-occlusion Attention Module [50.75589128518707]
We contribute the first high-quality object detection dataset for security inspection, named OPIXray.
OPIXray focused on the widely-occurred prohibited item "cutter", annotated manually by professional inspectors from the international airport.
We propose the De-occlusion Attention Module (DOAM), a plug-and-play module that can be easily inserted into and thus promote most popular detectors.
arXiv Detail & Related papers (2020-04-18T16:10:55Z) - Multi-Objective Variational Autoencoder: an Application for Smart
Infrastructure Maintenance [1.2311105789643062]
We propose a multi-objective variational autoencoder (MVA) method for smart infrastructure damage detection and diagnosis in multi-way sensing data.
Our method fuses data from multiple sensors in one ADNN at which informative features are being extracted and utilized for damage identification.
arXiv Detail & Related papers (2020-03-11T01:30:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.