Hyperspectral Anomaly Detection Methods: A Survey and Comparative Study
- URL: http://arxiv.org/abs/2507.05730v2
- Date: Fri, 11 Jul 2025 02:35:34 GMT
- Title: Hyperspectral Anomaly Detection Methods: A Survey and Comparative Study
- Authors: Aayushma Pant, Arbind Agrahari Baniya, Tsz-Kwan Lee, Sunil Aryal,
- Abstract summary: Hyperspectral anomaly detection (HAD) refers to the technique of identifying and locating anomalous targets in such data without prior information about a hyperspectral scene or target spectrum.<n>This study presents a comprehensive comparison of various HAD techniques, categorising them into statistical models, representation-based methods, classical machine learning approaches, and deep learning models.<n>Our findings highlight that deep learning models achieved the highest detection accuracy, while statistical models demonstrated exceptional speed across all datasets.
- Score: 1.074960192271861
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Hyperspectral images are high-dimensional datasets comprising hundreds of contiguous spectral bands, enabling detailed analysis of materials and surfaces. Hyperspectral anomaly detection (HAD) refers to the technique of identifying and locating anomalous targets in such data without prior information about a hyperspectral scene or target spectrum. This technology has seen rapid advancements in recent years, with applications in agriculture, defence, military surveillance, and environmental monitoring. Despite this significant progress, existing HAD methods continue to face challenges such as high computational complexity, sensitivity to noise, and limited generalisation across diverse datasets. This study presents a comprehensive comparison of various HAD techniques, categorising them into statistical models, representation-based methods, classical machine learning approaches, and deep learning models. We evaluated these methods across 17 benchmarking datasets using different performance metrics, such as ROC, AUC, and separability map to analyse detection accuracy, computational efficiency, their strengths, limitations, and directions for future research. Our findings highlight that deep learning models achieved the highest detection accuracy, while statistical models demonstrated exceptional speed across all datasets. This survey aims to provide valuable insights for researchers and practitioners working to advance the field of hyperspectral anomaly detection methods.
Related papers
- Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - Research on Anomaly Detection Methods Based on Diffusion Models [4.979627412142658]
Anomaly detection is a fundamental task in machine learning and data mining, with significant applications in cybersecurity, industrial fault diagnosis, and clinical disease monitoring.<n>Traditional methods, such as statistical modeling and machine learning-based approaches, often face challenges in handling complex, high-dimensional data distributions.<n>We propose a novel framework that leverages the strengths of diffusion probabilistic models (DPMs) to effectively identify anomalies in both image and audio data.
arXiv Detail & Related papers (2025-05-08T11:19:08Z) - Methods and Trends in Detecting Generated Images: A Comprehensive Review [0.552480439325792]
Generative Adversarial Networks (GANs), Diffusion Models, and Variational Autoencoders (VAEs) have enabled the synthesis of high-quality multimedia data.<n>These advancements have also raised significant concerns regarding adversarial attacks, unethical usage, and societal harm.
arXiv Detail & Related papers (2025-02-21T03:16:18Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.<n>In this paper, we investigate how detection performance varies across model backbones, types, and datasets.<n>We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Optimizing Multispectral Object Detection: A Bag of Tricks and Comprehensive Benchmarks [49.84182981950623]
Multispectral object detection, utilizing RGB and TIR (thermal infrared) modalities, is widely recognized as a challenging task.<n>It requires not only the effective extraction of features from both modalities and robust fusion strategies, but also the ability to address issues such as spectral discrepancies.<n>We introduce an efficient and easily deployable multispectral object detection framework that can seamlessly optimize high-performing single-modality models.
arXiv Detail & Related papers (2024-11-27T12:18:39Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Functional Anomaly Detection: a Benchmark Study [4.444788548423704]
Anomaly detection can now rely on measurements sampled at a very high frequency.
It is the purpose of this paper to investigate the performance of recent techniques for anomaly detection in the functional setup on real datasets.
arXiv Detail & Related papers (2022-01-13T18:20:32Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
We present novel weakly-supervised approaches to anomaly detection for industrial settings.
The approaches make use of a Digital Twin to generate a training dataset which simulates the normal operation of the machinery.
The performance of the proposed methods is compared against various state-of-the-art anomaly detection algorithms on an application to a real-world dataset.
arXiv Detail & Related papers (2020-11-12T10:15:56Z) - Anomaly Detection in Univariate Time-series: A Survey on the
State-of-the-Art [0.0]
Anomaly detection for time-series data has been an important research field for a long time.
Recent years an increasing number of machine learning algorithms have been developed to detect anomalies on time-series.
Researchers tried to improve these techniques using (deep) neural networks.
arXiv Detail & Related papers (2020-04-01T13:22:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.