論文の概要: Generalized Dual Discriminator GANs
- arxiv url: http://arxiv.org/abs/2507.17684v1
- Date: Wed, 23 Jul 2025 16:46:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 22:33:15.091917
- Title: Generalized Dual Discriminator GANs
- Title(参考訳): 一般化デュアル識別器GAN
- Authors: Penukonda Naga Chandana, Tejas Srivastava, Gowtham R. Kurri, V. Lalitha,
- Abstract要約: 二重識別器生成逆数ネットワーク(D2GAN)を導入し, 生成逆数ネットワークにおけるモード崩壊の問題を緩和した。
本研究では,まず,2値判別器の強度と可変損失関数の柔軟性を組み合わせた2値判別器$alpha$-GANs(D2$alpha$-GANs)を導入する。
- 参考スコア(独自算出の注目度): 5.604045325797645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dual discriminator generative adversarial networks (D2 GANs) were introduced to mitigate the problem of mode collapse in generative adversarial networks. In D2 GANs, two discriminators are employed alongside a generator: one discriminator rewards high scores for samples from the true data distribution, while the other favors samples from the generator. In this work, we first introduce dual discriminator $\alpha$-GANs (D2 $\alpha$-GANs), which combines the strengths of dual discriminators with the flexibility of a tunable loss function, $\alpha$-loss. We further generalize this approach to arbitrary functions defined on positive reals, leading to a broader class of models we refer to as generalized dual discriminator generative adversarial networks. For each of these proposed models, we provide theoretical analysis and show that the associated min-max optimization reduces to the minimization of a linear combination of an $f$-divergence and a reverse $f$-divergence. This generalizes the known simplification for D2-GANs, where the objective reduces to a linear combination of the KL-divergence and the reverse KL-divergence. Finally, we perform experiments on 2D synthetic data and use multiple performance metrics to capture various advantages of our GANs.
- Abstract(参考訳): 二重識別器生成逆数ネットワーク(D2GAN)を導入し, 生成逆数ネットワークにおけるモード崩壊の問題を緩和した。
D2 GANでは、2つの識別器がジェネレータと共に使用される: 1つの識別器は真のデータ分布からのサンプルに対して高いスコアを付与し、もう1つはジェネレータからのサンプルを好んでいる。
本稿では、まず、二値判別器の強度とチューナブル損失関数の柔軟性を組み合わせた二値判別器$\alpha$-GANs(D2$\alpha$-GANs)を紹介する。
さらに、このアプローチを正実数上で定義された任意の関数に一般化し、一般化双対判別器生成対数ネットワークと呼ばれるモデルのより広範なクラスに導いた。
これらのモデルそれぞれに対して、理論解析を行い、関連するmin-max最適化が$f$-divergenceと逆$f$-divergenceの線形結合の最小化に還元されることを示す。
これは、D2-GANの既知の単純化を一般化し、KL分割と逆KL分割の線形結合に目的を還元する。
最後に、2次元合成データの実験を行い、GANの様々な利点を捉えるために複数のパフォーマンスメトリクスを使用します。
関連論文リスト
- A New Formulation of Lipschitz Constrained With Functional Gradient Learning for GANs [52.55025869932486]
本稿では,大規模データセット上でGAN(Generative Adversarial Networks)のトレーニングを行うための有望な代替手法を提案する。
本稿では,GANの学習を安定させるために,Lipschitz-Constrained Functional Gradient GANs Learning (Li-CFG)法を提案する。
判別器勾配のノルムを増大させることにより、潜在ベクトルの近傍サイズを小さくすることができることを示す。
論文 参考訳(メタデータ) (2025-01-20T02:48:07Z) - Refine, Discriminate and Align: Stealing Encoders via Sample-Wise Prototypes and Multi-Relational Extraction [57.16121098944589]
RDAは、事前訓練されたエンコーダを盗むために、以前の取り組みで普及した2つの主要な欠陥に対処するために設計された先駆的なアプローチである。
これは、サンプルの様々な視点に対してターゲットエンコーダの表現を統一するサンプルワイドプロトタイプによって達成される。
より強力な有効性を得るために、我々はサロゲートエンコーダを訓練し、ミスマッチした埋め込み-プロトタイプペアを識別するマルチリレーショナル抽出損失を開発する。
論文 参考訳(メタデータ) (2023-12-01T15:03:29Z) - Addressing GAN Training Instabilities via Tunable Classification Losses [8.151943266391493]
GAN(Generative Adversarial Network)は、形式的な保証付き合成データを生成する。
すべての対称$f$-発散は収束において同値であることを示す。
また,合成2次元ガウス混合環のトレーニング不安定性を緩和するために,$(alpha_D,alpha_G)$のチューニング値も強調する。
論文 参考訳(メタデータ) (2023-10-27T17:29:07Z) - $(\alpha_D,\alpha_G)$-GANs: Addressing GAN Training Instabilities via
Dual Objectives [7.493779672689531]
生成器(G)と識別器(D)に異なる値関数(対象物)を持つ2目的GANのクラスを導入する。
結果のゼロでない和ゲームは、$(alpha_D,alpha_G)$の適切な条件下での$f$-divergenceを最小化する。
合成2次元ガウス混合環とスタックドMNISTデータセットのトレーニング不安定性を緩和するために, チューニング $(alpha_D,alpha_G)$ の値を強調した。
論文 参考訳(メタデータ) (2023-02-28T05:22:54Z) - Dual Generator Offline Reinforcement Learning [90.05278061564198]
オフラインのRLでは、学習したポリシーをデータに近づき続けることが不可欠である。
実際には、GANベースのオフラインRL法は代替手法と同様に実行されていない。
2つのジェネレータを持つことにより、有効なGANベースのオフラインRL法が実現されるだけでなく、サポート制約を近似することも示している。
論文 参考訳(メタデータ) (2022-11-02T20:25:18Z) - Combating Mode Collapse in GANs via Manifold Entropy Estimation [70.06639443446545]
Generative Adversarial Networks (GAN) は、様々なタスクやアプリケーションにおいて魅力的な結果を示している。
GANのモード崩壊問題に対処するための新しいトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2022-08-25T12:33:31Z) - Fuzzy Generative Adversarial Networks [0.0]
Generative Adversarial Networks (GAN) は、データ生成と半教師付き分類のためのよく知られたツールである。
本稿では,平均絶対誤差(MAE)と平均二乗誤差(MSE)によるGANの回帰能力の向上を示す手法を提案する。
ファジィ論理層を追加することで、GANの回帰処理能力が向上し、最も望ましい注入位置は問題固有であることが示される。
論文 参考訳(メタデータ) (2021-10-27T17:05:06Z) - Hidden Convexity of Wasserstein GANs: Interpretable Generative Models
with Closed-Form Solutions [31.952858521063277]
凸双対レンズを用いた2層ニューラルネットワーク判別器によるワッサースタインGANの影響を解析した。
さらに、識別器の異なる活性化機能のパワーを実証する。
論文 参考訳(メタデータ) (2021-07-12T18:33:49Z) - Least $k$th-Order and R\'{e}nyi Generative Adversarial Networks [12.13405065406781]
実験結果から,MNISTデータセットとCelebAデータセットに適用した損失関数は,それぞれ$k$と$alpha$のパラメータによって提供される余分な自由度により,性能上のメリットが期待できることがわかった。
本研究は GAN に適用されているが,提案手法は汎用的であり,情報理論の他の応用例,例えば人工知能における公正性やプライバシの問題などに応用することができる。
論文 参考訳(メタデータ) (2020-06-03T18:44:05Z) - Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
by Exploring Energy of the Discriminator [85.68825725223873]
GAN(Generative Adversarial Networks)は、高次元データのモデリングにおいて大きな可能性を秘めている。
本稿では,WGANの識別器の特性を活かした識別器コントラストの多様性について紹介する。
我々は、合成データと実世界の画像生成ベンチマークの両方において、大幅に改善された生成の利点を実証する。
論文 参考訳(メタデータ) (2020-04-05T01:50:16Z) - Your GAN is Secretly an Energy-based Model and You Should use
Discriminator Driven Latent Sampling [106.68533003806276]
本研究では,潜時空間におけるサンプリングは,潜時空間の前対数密度と判別器出力スコアの和によって誘導されるエネルギーベースモデルに従って,潜時空間におけるサンプリングを行うことによって達成できることを示す。
判別器駆動潜時サンプリング(DDLS)は,高次元画素空間で動作する従来の手法と比較して,高効率であることを示す。
論文 参考訳(メタデータ) (2020-03-12T23:33:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。