論文の概要: $(\alpha_D,\alpha_G)$-GANs: Addressing GAN Training Instabilities via
Dual Objectives
- arxiv url: http://arxiv.org/abs/2302.14320v2
- Date: Wed, 3 May 2023 04:22:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-04 17:44:57.942488
- Title: $(\alpha_D,\alpha_G)$-GANs: Addressing GAN Training Instabilities via
Dual Objectives
- Title(参考訳): $(\alpha_D,\alpha_G)$-GANs: デュアルオブジェクトによるGANトレーニングの不安定性への対処
- Authors: Monica Welfert, Kyle Otstot, Gowtham R. Kurri, Lalitha Sankar
- Abstract要約: 生成器(G)と識別器(D)に異なる値関数(対象物)を持つ2目的GANのクラスを導入する。
結果のゼロでない和ゲームは、$(alpha_D,alpha_G)$の適切な条件下での$f$-divergenceを最小化する。
合成2次元ガウス混合環とスタックドMNISTデータセットのトレーニング不安定性を緩和するために, チューニング $(alpha_D,alpha_G)$ の値を強調した。
- 参考スコア(独自算出の注目度): 7.493779672689531
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In an effort to address the training instabilities of GANs, we introduce a
class of dual-objective GANs with different value functions (objectives) for
the generator (G) and discriminator (D). In particular, we model each objective
using $\alpha$-loss, a tunable classification loss, to obtain
$(\alpha_D,\alpha_G)$-GANs, parameterized by $(\alpha_D,\alpha_G)\in
(0,\infty]^2$. For sufficiently large number of samples and capacities for G
and D, we show that the resulting non-zero sum game simplifies to minimizing an
$f$-divergence under appropriate conditions on $(\alpha_D,\alpha_G)$. In the
finite sample and capacity setting, we define estimation error to quantify the
gap in the generator's performance relative to the optimal setting with
infinite samples and obtain upper bounds on this error, showing it to be order
optimal under certain conditions. Finally, we highlight the value of tuning
$(\alpha_D,\alpha_G)$ in alleviating training instabilities for the synthetic
2D Gaussian mixture ring and the Stacked MNIST datasets.
- Abstract(参考訳): GANのトレーニング不安定性に対処するために、生成器(G)と識別器(D)に対して異なる値関数(対象物)を持つ二重目的GANのクラスを導入する。
特に、調整可能な分類損失である$\alpha$-lossを用いて各目的をモデル化し、$(\alpha_D,\alpha_G)$-GANsを求め、$(\alpha_D,\alpha_G)\in (0,\infty]^2$でパラメータ化する。
g と d の十分な数のサンプルと容量について、結果の非零和ゲームは $(\alpha_d,\alpha_g)$ の適切な条件下での$f$-divergence を最小化する。
有限サンプルとキャパシティ設定において、無限サンプルの最適設定に対するジェネレータ性能のギャップを定量化するための推定誤差を定義し、この誤差の上限を求め、一定の条件下で最適であることを示す。
最後に、合成2Dガウス混合環とスタックドMNISTデータセットのトレーニング不安定性を緩和するために、$(\alpha_D,\alpha_G)$のチューニング値を強調した。
関連論文リスト
- Addressing GAN Training Instabilities via Tunable Classification Losses [8.151943266391493]
GAN(Generative Adversarial Network)は、形式的な保証付き合成データを生成する。
すべての対称$f$-発散は収束において同値であることを示す。
また,合成2次元ガウス混合環のトレーニング不安定性を緩和するために,$(alpha_D,alpha_G)$のチューニング値も強調する。
論文 参考訳(メタデータ) (2023-10-27T17:29:07Z) - A Unifying Generator Loss Function for Generative Adversarial Networks [5.5575224613422725]
二重目的生成逆数ネットワーク(GAN)に対する$alpha$-parametrized generator loss関数の導入
ジェネレータ損失関数は対称クラス確率推定型関数である$mathcalL_alpha$に基づいており、その結果のGANシステムは$mathcalL_alpha$-GANと呼ばれる。
論文 参考訳(メタデータ) (2023-08-14T16:16:31Z) - Gradient-Free Methods for Deterministic and Stochastic Nonsmooth
Nonconvex Optimization [94.19177623349947]
非滑らかな非最適化問題は、機械学習とビジネス製造に現れる。
2つのコア課題は、有限収束を保証する効率的な方法の開発を妨げる。
GFMとSGFMの2相版も提案され, 改良された大規模評価結果が得られた。
論文 参考訳(メタデータ) (2022-09-12T06:53:24Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
縮退した線形マルコフ+デルタ決定における最適同定問題について, 生成モデルに基づく固定信頼度設定における検討を行った。
複雑な非最適化プログラムの解としての下位境界は、そのようなアルゴリズムを考案する出発点として用いられる。
論文 参考訳(メタデータ) (2022-08-11T04:12:50Z) - $\alpha$-GAN: Convergence and Estimation Guarantees [7.493779672689531]
一般CPE損失関数 GAN の min-max 最適化と、関連する$f$-divergences の最小化との対応性を証明する。
次に、$alpha$-GAN を $alpha$-loss で定義し、いくつかの GAN を補間し、有元発散の最小化に対応する。
論文 参考訳(メタデータ) (2022-05-12T23:26:51Z) - Approximate Function Evaluation via Multi-Armed Bandits [51.146684847667125]
既知の滑らかな関数 $f$ の値を未知の点 $boldsymbolmu in mathbbRn$ で推定する問題について検討する。
我々は、各座標の重要性に応じてサンプルを学習するインスタンス適応アルゴリズムを設計し、少なくとも1-delta$の確率で$epsilon$の正確な推定値である$f(boldsymbolmu)$を返す。
論文 参考訳(メタデータ) (2022-03-18T18:50:52Z) - Convergence and Sample Complexity of SGD in GANs [15.25030172685628]
SGDによるGAN(Generative Adversarial Networks)のトレーニングにおける収束保証を提供する。
我々は,非線形アクティベーション機能を持つ1層ジェネレータネットワークによってモデル化されたターゲット分布の学習を検討する。
この結果は、ReLUを含む幅広い非線形アクティベーション関数 $phi$ に適用され、切り離された統計との接続によって実現される。
論文 参考訳(メタデータ) (2020-12-01T18:50:38Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z) - Your GAN is Secretly an Energy-based Model and You Should use
Discriminator Driven Latent Sampling [106.68533003806276]
本研究では,潜時空間におけるサンプリングは,潜時空間の前対数密度と判別器出力スコアの和によって誘導されるエネルギーベースモデルに従って,潜時空間におけるサンプリングを行うことによって達成できることを示す。
判別器駆動潜時サンプリング(DDLS)は,高次元画素空間で動作する従来の手法と比較して,高効率であることを示す。
論文 参考訳(メタデータ) (2020-03-12T23:33:50Z) - Curse of Dimensionality on Randomized Smoothing for Certifiable
Robustness [151.67113334248464]
我々は、他の攻撃モデルに対してスムースな手法を拡張することは困難であることを示す。
我々はCIFARに関する実験結果を示し,その理論を検証した。
論文 参考訳(メタデータ) (2020-02-08T22:02:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。