Flow Matching Meets Biology and Life Science: A Survey
- URL: http://arxiv.org/abs/2507.17731v1
- Date: Wed, 23 Jul 2025 17:44:29 GMT
- Title: Flow Matching Meets Biology and Life Science: A Survey
- Authors: Zihao Li, Zhichen Zeng, Xiao Lin, Feihao Fang, Yanru Qu, Zhe Xu, Zhining Liu, Xuying Ning, Tianxin Wei, Ge Liu, Hanghang Tong, Jingrui He,
- Abstract summary: Flow matching has emerged as a powerful and efficient alternative to diffusion-based generative modeling.<n>This paper presents the first comprehensive survey of recent developments in flow matching and its applications in biological domains.
- Score: 65.2146737141455
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Over the past decade, advances in generative modeling, such as generative adversarial networks, masked autoencoders, and diffusion models, have significantly transformed biological research and discovery, enabling breakthroughs in molecule design, protein generation, drug discovery, and beyond. At the same time, biological applications have served as valuable testbeds for evaluating the capabilities of generative models. Recently, flow matching has emerged as a powerful and efficient alternative to diffusion-based generative modeling, with growing interest in its application to problems in biology and life sciences. This paper presents the first comprehensive survey of recent developments in flow matching and its applications in biological domains. We begin by systematically reviewing the foundations and variants of flow matching, and then categorize its applications into three major areas: biological sequence modeling, molecule generation and design, and peptide and protein generation. For each, we provide an in-depth review of recent progress. We also summarize commonly used datasets and software tools, and conclude with a discussion of potential future directions. The corresponding curated resources are available at https://github.com/Violet24K/Awesome-Flow-Matching-Meets-Biology.
Related papers
- Sparsity is All You Need: Rethinking Biological Pathway-Informed Approaches in Deep Learning [12.24146000012622]
Biologically-informed neural networks typically leverage pathway annotations to enhance performance in biomedical applications.<n>We conducted a comprehensive analysis of all relevant pathway-based neural network models for predictive tasks.<n>Our findings suggest that pathway annotations may be too noisy or inadequately explored by current methods.
arXiv Detail & Related papers (2025-05-07T10:14:31Z) - Biomedical Foundation Model: A Survey [84.26268124754792]
Foundation models are large-scale pre-trained models that learn from extensive unlabeled datasets.<n>These models can be adapted to various applications such as question answering and visual understanding.<n>This survey explores the potential of foundation models across diverse domains within biomedical fields.
arXiv Detail & Related papers (2025-03-03T22:42:00Z) - Diffusion Models for Molecules: A Survey of Methods and Tasks [56.44565051667812]
Generative tasks about molecules are crucial for drug discovery and material design.<n>Diffusion models have emerged as an impressive class of deep generative models.<n>This paper conducts a comprehensive survey of diffusion model-based molecular generative methods.
arXiv Detail & Related papers (2025-02-13T17:22:50Z) - A Review of BioTree Construction in the Context of Information Fusion: Priors, Methods, Applications and Trends [41.740569399988644]
Biological tree (BioTree) analysis is a foundational tool in biology, enabling the exploration of evolutionary and differentiation.<n>Traditional tree construction methods face challenges in handling the growing complexity and scale of modern biological data.<n>Advances in deep learning (DL) offer transformative opportunities by enabling the fusion of biological prior knowledge with data-driven models.
arXiv Detail & Related papers (2024-10-07T08:00:41Z) - BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
We introduce BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions.<n>BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model.<n>It achieves an average of 21% improvement in predicting relevant genetic perturbations across six datasets.
arXiv Detail & Related papers (2024-05-27T19:57:17Z) - Leveraging Biomolecule and Natural Language through Multi-Modal
Learning: A Survey [75.47055414002571]
The integration of biomolecular modeling with natural language (BL) has emerged as a promising interdisciplinary area at the intersection of artificial intelligence, chemistry and biology.
We provide an analysis of recent advancements achieved through cross modeling of biomolecules and natural language.
arXiv Detail & Related papers (2024-03-03T14:59:47Z) - Progress and Opportunities of Foundation Models in Bioinformatics [77.74411726471439]
Foundations models (FMs) have ushered in a new era in computational biology, especially in the realm of deep learning.
Central to our focus is the application of FMs to specific biological problems, aiming to guide the research community in choosing appropriate FMs for their research needs.
Review analyses challenges and limitations faced by FMs in biology, such as data noise, model explainability, and potential biases.
arXiv Detail & Related papers (2024-02-06T02:29:17Z) - PhyloGFN: Phylogenetic inference with generative flow networks [57.104166650526416]
We introduce the framework of generative flow networks (GFlowNets) to tackle two core problems in phylogenetics: parsimony-based and phylogenetic inference.
Because GFlowNets are well-suited for sampling complex structures, they are a natural choice for exploring and sampling from the multimodal posterior distribution over tree topologies.
We demonstrate that our amortized posterior sampler, PhyloGFN, produces diverse and high-quality evolutionary hypotheses on real benchmark datasets.
arXiv Detail & Related papers (2023-10-12T23:46:08Z) - Diffusion Models in Bioinformatics: A New Wave of Deep Learning
Revolution in Action [16.800622727133252]
Denoising diffusion models have emerged as one of the most powerful generative models in recent years.
This review aims to provide a rather thorough overview of the applications of diffusion models in bioinformatics.
arXiv Detail & Related papers (2023-02-13T15:37:23Z) - Utilising Graph Machine Learning within Drug Discovery and Development [19.21101749270075]
Graph Machine Learning (GML) is receiving growing interest within the pharmaceutical and biotechnology industries for its ability to model biomolecular structures.
Herein, we present a multidisciplinary academic-industrial review of the topic within the context of drug discovery and development.
After introducing key terms and modelling approaches, we move chronologically through the drug development pipeline to identify and summarise work incorporating: target identification, design of small molecules and biologics, and drug repurposing.
arXiv Detail & Related papers (2020-12-09T10:12:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.