Utilising Graph Machine Learning within Drug Discovery and Development
- URL: http://arxiv.org/abs/2012.05716v2
- Date: Wed, 10 Feb 2021 17:13:24 GMT
- Title: Utilising Graph Machine Learning within Drug Discovery and Development
- Authors: Thomas Gaudelet, Ben Day, Arian R. Jamasb, Jyothish Soman, Cristian
Regep, Gertrude Liu, Jeremy B. R. Hayter, Richard Vickers, Charles Roberts,
Jian Tang, David Roblin, Tom L. Blundell, Michael M. Bronstein, Jake P.
Taylor-King
- Abstract summary: Graph Machine Learning (GML) is receiving growing interest within the pharmaceutical and biotechnology industries for its ability to model biomolecular structures.
Herein, we present a multidisciplinary academic-industrial review of the topic within the context of drug discovery and development.
After introducing key terms and modelling approaches, we move chronologically through the drug development pipeline to identify and summarise work incorporating: target identification, design of small molecules and biologics, and drug repurposing.
- Score: 19.21101749270075
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph Machine Learning (GML) is receiving growing interest within the
pharmaceutical and biotechnology industries for its ability to model
biomolecular structures, the functional relationships between them, and
integrate multi-omic datasets - amongst other data types. Herein, we present a
multidisciplinary academic-industrial review of the topic within the context of
drug discovery and development. After introducing key terms and modelling
approaches, we move chronologically through the drug development pipeline to
identify and summarise work incorporating: target identification, design of
small molecules and biologics, and drug repurposing. Whilst the field is still
emerging, key milestones including repurposed drugs entering in vivo studies,
suggest graph machine learning will become a modelling framework of choice
within biomedical machine learning.
Related papers
- Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift.
We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes.
arXiv Detail & Related papers (2024-09-06T02:03:38Z) - Simplicity within biological complexity [0.0]
We survey the literature and argue for the development of a comprehensive framework for embedding of multi-scale molecular network data.
Network embedding methods map nodes to points in low-dimensional space, so that proximity in the learned space reflects the network's topology-function relationships.
We propose to develop a general, comprehensive embedding framework for multi-omic network data, from models to efficient and scalable software implementation.
arXiv Detail & Related papers (2024-05-15T13:32:45Z) - Leveraging Biomolecule and Natural Language through Multi-Modal
Learning: A Survey [75.47055414002571]
The integration of biomolecular modeling with natural language (BL) has emerged as a promising interdisciplinary area at the intersection of artificial intelligence, chemistry and biology.
We provide an analysis of recent advancements achieved through cross modeling of biomolecules and natural language.
arXiv Detail & Related papers (2024-03-03T14:59:47Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - Graph Representation Learning for Interactive Biomolecule Systems [2.786956882821218]
This paper presents a review of the methodologies used to represent biological molecules and systems as computer-recognizable objects.
It examines how geometric deep learning models, with an emphasis on graph-based techniques, can analyze biomolecule data to enable drug discovery, protein characterization, and biological system analysis.
arXiv Detail & Related papers (2023-04-05T08:00:50Z) - Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey [6.288056740658763]
Graph Machine Learning (GML) has gained considerable attention for its exceptional ability to model graph-structured biomedical data.
Recent studies have proposed integrating external biomedical knowledge into the GML pipeline to realise more precise and interpretable drug discovery.
arXiv Detail & Related papers (2023-02-16T12:38:01Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Multimodal Graph-based Transformer Framework for Biomedical Relation
Extraction [21.858440542249934]
We introduce a novel framework that enables the model to learn multi-omnics biological information about entities (proteins) with the help of additional multi-modal cues like molecular structure.
We evaluate our proposed method on ProteinProtein Interaction task from the biomedical corpus.
arXiv Detail & Related papers (2021-07-01T16:37:17Z) - Scientific Language Models for Biomedical Knowledge Base Completion: An
Empirical Study [62.376800537374024]
We study scientific LMs for KG completion, exploring whether we can tap into their latent knowledge to enhance biomedical link prediction.
We integrate the LM-based models with KG embedding models, using a router method that learns to assign each input example to either type of model and provides a substantial boost in performance.
arXiv Detail & Related papers (2021-06-17T17:55:33Z) - Multi-View Self-Attention for Interpretable Drug-Target Interaction
Prediction [4.307720252429733]
In machine learning approaches, the numerical representation of molecules is critical to the performance of the model.
We propose a self-attention-based multi-view representation learning approach for modeling drug-target interactions.
arXiv Detail & Related papers (2020-05-01T14:28:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.