LSDM: LLM-Enhanced Spatio-temporal Diffusion Model for Service-Level Mobile Traffic Prediction
- URL: http://arxiv.org/abs/2507.17795v1
- Date: Wed, 23 Jul 2025 14:01:16 GMT
- Title: LSDM: LLM-Enhanced Spatio-temporal Diffusion Model for Service-Level Mobile Traffic Prediction
- Authors: Shiyuan Zhang, Tong Li, Zhu Xiao, Hongyang Du, Kaibin Huang,
- Abstract summary: Service-level mobile traffic prediction is essential for network efficiency and quality of service enhancement.<n>We propose an LLM-Enhanced Spatio-temporal Diffusion Model (LSDM)<n>LSDM integrates the generative power of diffusion models with the adaptive learning capabilities of transformers.
- Score: 30.816231862143248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Service-level mobile traffic prediction for individual users is essential for network efficiency and quality of service enhancement. However, current prediction methods are limited in their adaptability across different urban environments and produce inaccurate results due to the high uncertainty in personal traffic patterns, the lack of detailed environmental context, and the complex dependencies among different network services. These challenges demand advanced modeling techniques that can capture dynamic traffic distributions and rich environmental features. Inspired by the recent success of diffusion models in distribution modeling and Large Language Models (LLMs) in contextual understanding, we propose an LLM-Enhanced Spatio-temporal Diffusion Model (LSDM). LSDM integrates the generative power of diffusion models with the adaptive learning capabilities of transformers, augmented by the ability to capture multimodal environmental information for modeling service-level patterns and dynamics. Extensive evaluations on real-world service-level datasets demonstrate that the model excels in traffic usage predictions, showing outstanding generalization and adaptability. After incorporating contextual information via LLM, the performance improves by at least 2.83% in terms of the coefficient of determination. Compared to models of a similar type, such as CSDI, the root mean squared error can be reduced by at least 8.29%. The code and dataset will be available at: https://github.com/SoftYuaneR/LSDM.
Related papers
- When can isotropy help adapt LLMs' next word prediction to numerical domains? [53.98633183204453]
It is shown that the isotropic property of LLM embeddings in contextual embedding space preserves the underlying structure of representations.<n> Experiments show that different characteristics of numerical data and model architectures have different impacts on isotropy.
arXiv Detail & Related papers (2025-05-22T05:10:34Z) - World Model-Based Learning for Long-Term Age of Information Minimization in Vehicular Networks [53.98633183204453]
In this paper, a novel world model-based learning framework is proposed to minimize packet-completeness-aware age of information (CAoI) in a vehicular network.<n>A world model framework is proposed to jointly learn a dynamic model of the mmWave V2X environment and use it to imagine trajectories for learning how to perform link scheduling.<n>In particular, the long-term policy is learned in differentiable imagined trajectories instead of environment interactions.
arXiv Detail & Related papers (2025-05-03T06:23:18Z) - FlowDistill: Scalable Traffic Flow Prediction via Distillation from LLMs [5.6685153523382015]
FlowDistill is a lightweight traffic prediction framework based on knowledge distillation from large language models (LLMs)<n>Despite its simplicity, FlowDistill consistently outperforms state-of-the-art models in prediction accuracy while requiring significantly less training data.
arXiv Detail & Related papers (2025-04-02T19:54:54Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
A considerable challenge in traffic prediction lies in handling the diverse data distributions caused by vastly different traffic conditions.<n>We propose a graph-aware LLM for traffic prediction that considers proximal traffic information.<n>We adopt a lightweight approach for efficient domain adaptation when facing new data distributions in few-shot fashion.
arXiv Detail & Related papers (2024-10-28T09:19:29Z) - FoMo: A Foundation Model for Mobile Traffic Forecasting with Diffusion Model [5.96737388771505]
We propose an innovative Foundation model for Mobile traffic forecasting (FoMo)<n>FoMo aims to handle diverse forecasting tasks of short/long-term predictions and distribution generation across multiple cities to support network planning and optimization.<n>FoMo combines diffusion models and transformers, where various universality masks are proposed to enable FoMo to learn intrinsic features of different tasks.
arXiv Detail & Related papers (2024-10-20T07:32:16Z) - STLLM-DF: A Spatial-Temporal Large Language Model with Diffusion for Enhanced Multi-Mode Traffic System Forecasting [32.943673568195315]
We propose the Spatial-Temporal Large Language Model (STLLM-DF) to improve multi-task transportation prediction.
The DDPM's robust denoising capabilities enable it to recover underlying data patterns from noisy inputs.
We show that STLLM-DF consistently outperforms existing models, achieving an average reduction of 2.40% in MAE, 4.50% in RMSE, and 1.51% in MAPE.
arXiv Detail & Related papers (2024-09-08T15:29:27Z) - Towards Explainable Traffic Flow Prediction with Large Language Models [36.86937188565623]
We propose a Traffic flow Prediction model based on Large Language Models (LLMs) to generate explainable traffic predictions.
By transferring multi-modal traffic data into natural language descriptions, xTP-LLM captures complex time-series patterns and external factors from comprehensive traffic data.
Empirically, xTP-LLM shows competitive accuracy compared with deep learning baselines, while providing an intuitive and reliable explanation for predictions.
arXiv Detail & Related papers (2024-04-03T07:14:15Z) - Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters [65.15700861265432]
We present a parameter-efficient continual learning framework to alleviate long-term forgetting in incremental learning with vision-language models.
Our approach involves the dynamic expansion of a pre-trained CLIP model, through the integration of Mixture-of-Experts (MoE) adapters.
To preserve the zero-shot recognition capability of vision-language models, we introduce a Distribution Discriminative Auto-Selector.
arXiv Detail & Related papers (2024-03-18T08:00:23Z) - TPLLM: A Traffic Prediction Framework Based on Pretrained Large Language Models [27.306180426294784]
We introduce TPLLM, a novel traffic prediction framework leveraging Large Language Models (LLMs)
In this framework, we construct a sequence embedding layer based on Conal Neural Networks (LoCNNs) and a graph embedding layer based on Graph Contemporalal Networks (GCNs) to extract sequence features and spatial features.
Experiments on two real-world datasets demonstrate commendable performance in both full-sample and few-shot prediction scenarios.
arXiv Detail & Related papers (2024-03-04T17:08:57Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
We propose a Machine Learning-based model that leverages novel key predictors for estimating pathloss.
By quantitatively evaluating the ability of various ML algorithms in terms of predictive, generalization and computational performance, our results show that Light Gradient Boosting Machine (LightGBM) algorithm overall outperforms others.
arXiv Detail & Related papers (2022-01-30T19:50:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.