FoMo: A Foundation Model for Mobile Traffic Forecasting with Diffusion Model
- URL: http://arxiv.org/abs/2410.15322v2
- Date: Tue, 14 Jan 2025 06:59:12 GMT
- Title: FoMo: A Foundation Model for Mobile Traffic Forecasting with Diffusion Model
- Authors: Haoye Chai, Xiaoqian Qi, Shiyuan Zhang, Yong Li,
- Abstract summary: We propose an innovative Foundation model for Mobile traffic forecasting (FoMo)
FoMo aims to handle diverse forecasting tasks of short/long-term predictions and distribution generation across multiple cities to support network planning and optimization.
FoMo combines diffusion models and transformers, where various universality masks are proposed to enable FoMo to learn intrinsic features of different tasks.
- Score: 5.96737388771505
- License:
- Abstract: Mobile traffic forecasting allows operators to anticipate network dynamics and performance in advance, offering substantial potential for enhancing service quality and improving user experience. However, existing models are often task-oriented and are trained with tailored data, which limits their effectiveness in diverse mobile network tasks of Base Station (BS) deployment, resource allocation, energy optimization, etc. and hinders generalization across different urban environments. Foundation models have made remarkable strides across various domains of NLP and CV due to their multi-tasking adaption and zero/few-shot learning capabilities. In this paper, we propose an innovative Foundation model for Mo}bile traffic forecasting (FoMo), aiming to handle diverse forecasting tasks of short/long-term predictions and distribution generation across multiple cities to support network planning and optimization. FoMo combines diffusion models and transformers, where various spatio-temporal masks are proposed to enable FoMo to learn intrinsic features of different tasks, and a contrastive learning strategy is developed to capture the correlations between mobile traffic and urban contexts, thereby improving its transfer learning capability. Extensive experiments on 9 real-world datasets demonstrate that FoMo outperforms current models concerning diverse forecasting tasks and zero/few-shot learning, showcasing a strong universality.
Related papers
- Aerial Reliable Collaborative Communications for Terrestrial Mobile Users via Evolutionary Multi-Objective Deep Reinforcement Learning [59.660724802286865]
Unmanned aerial vehicles (UAVs) have emerged as the potential aerial base stations (BSs) to improve terrestrial communications.
This work employs collaborative beamforming through a UAV-enabled virtual antenna array to improve transmission performance from the UAV to terrestrial mobile users.
arXiv Detail & Related papers (2025-02-09T09:15:47Z) - A Universal Model for Human Mobility Prediction [7.542075639525391]
We propose a universal human mobility prediction model (named UniMob), which can be applied to both individual trajectory and crowd flow.
Our model achieves the highest performance improvement of more than 14% and 25% in MAPE and Accuracy@5.
arXiv Detail & Related papers (2024-12-19T07:38:13Z) - Planning-Aware Diffusion Networks for Enhanced Motion Forecasting in Autonomous Driving [0.0]
Planning-Integrated Forecasting Model (PIFM) is a novel framework inspired by neural mechanisms governing decision-making and multi-agent coordination in the brain.
PIFM is able to forecast future trajectories of all agents within a scenario.
This architecture enhances model transparency, as it parallels the brain's method of dynamically adjusting predictions based on external stimuli and other agents'behaviors.
arXiv Detail & Related papers (2024-10-25T15:44:51Z) - On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
Multimodal learning is expected to boost model performance by integrating information from different modalities.
The widely-used joint training strategy leads to imbalanced and under-optimized uni-modal representations.
We propose On-the-fly Prediction Modulation (OPM) and On-the-fly Gradient Modulation (OGM) strategies to modulate the optimization of each modality.
arXiv Detail & Related papers (2024-10-15T13:15:50Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Delving into Multi-modal Multi-task Foundation Models for Road Scene Understanding: From Learning Paradigm Perspectives [56.2139730920855]
We present a systematic analysis of MM-VUFMs specifically designed for road scenes.
Our objective is to provide a comprehensive overview of common practices, referring to task-specific models, unified multi-modal models, unified multi-task models, and foundation model prompting techniques.
We provide insights into key challenges and future trends, such as closed-loop driving systems, interpretability, embodied driving agents, and world models.
arXiv Detail & Related papers (2024-02-05T12:47:09Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
Vision foundation models (VFMs) serve as potent building blocks for a wide range of AI applications.
The scarcity of comprehensive training data, the need for multi-sensor integration, and the diverse task-specific architectures pose significant obstacles to the development of VFMs.
This paper delves into the critical challenge of forging VFMs tailored specifically for autonomous driving, while also outlining future directions.
arXiv Detail & Related papers (2024-01-16T01:57:24Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
In this paper, we investigate the transfer performance of various types of self-supervised methods, including MoCo and SimCLR, on three downstream tasks.
We find that their performances are sub-optimal or even lag far behind the single-task baseline.
We propose a simple yet effective pretrain-adapt-finetune paradigm for general multi-task training.
arXiv Detail & Related papers (2022-09-19T12:15:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.