論文の概要: A Concept-based approach to Voice Disorder Detection
- arxiv url: http://arxiv.org/abs/2507.17799v1
- Date: Wed, 23 Jul 2025 16:11:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:42.321975
- Title: A Concept-based approach to Voice Disorder Detection
- Title(参考訳): 音声障害検出のための概念的アプローチ
- Authors: Davide Ghia, Gabriele Ciravegna, Alkis Koudounas, Marco Fantini, Erika Crosetti, Giovanni Succo, Tania Cerquitelli,
- Abstract要約: 本稿では、ディープニューラルネットワーク(DNN)の解釈性向上を目的とした、説明可能なAI(XAI)について検討する。
これはConcept Bottleneck Model(CBM)やConcept Embedding Model(CEM)といったコンセプトベースモデルに焦点を当てている。
- 参考スコア(独自算出の注目度): 5.078687209938162
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Voice disorders affect a significant portion of the population, and the ability to diagnose them using automated, non-invasive techniques would represent a substantial advancement in healthcare, improving the quality of life of patients. Recent studies have demonstrated that artificial intelligence models, particularly Deep Neural Networks (DNNs), can effectively address this task. However, due to their complexity, the decision-making process of such models often remain opaque, limiting their trustworthiness in clinical contexts. This paper investigates an alternative approach based on Explainable AI (XAI), a field that aims to improve the interpretability of DNNs by providing different forms of explanations. Specifically, this works focuses on concept-based models such as Concept Bottleneck Model (CBM) and Concept Embedding Model (CEM) and how they can achieve performance comparable to traditional deep learning methods, while offering a more transparent and interpretable decision framework.
- Abstract(参考訳): 音声障害は、人口のかなりの部分に影響し、自動化された非侵襲的手法を用いてそれらを診断する能力は、患者の生活の質を向上させるために、医療の大幅な進歩を示す。
近年の研究では、人工知能モデル、特にディープニューラルネットワーク(DNN)がこの課題に効果的に対処できることが示されている。
しかし、それらの複雑さのため、そのようなモデルの意思決定プロセスはしばしば不透明であり、臨床の文脈における信頼性を制限している。
本稿では,DNNの解釈性の向上を目的とした,説明可能なAI(XAI)に基づく代替手法について検討する。
具体的には、Concept Bottleneck Model(CBM)やConcept Embedding Model(CEM)といったコンセプトベースのモデルに焦点を当て、より透明で解釈可能な決定フレームワークを提供しながら、従来のディープラーニングメソッドに匹敵するパフォーマンスを実現する方法について論じる。
関連論文リスト
- GEMeX-ThinkVG: Towards Thinking with Visual Grounding in Medical VQA via Reinforcement Learning [50.94508930739623]
医学的視覚的質問応答は、医学的イメージに基づいた自然言語的質問にモデルで答えることによって、臨床的な意思決定を支援することを目的としている。
現状の手法は, 信頼性の限界や解釈可能性の低下に悩まされており, 臨床医や患者がモデル生成の回答を理解し, 信頼する能力が損なわれている。
この研究はまず、回答生成を中間的推論ステップに分解するThinking with Visual Groundingデータセットを提案する。
本稿では,強化学習のための新たな報奨機構を導入し,モデル推論プロセスと最終解の整合性を改善した。
論文 参考訳(メタデータ) (2025-06-22T08:09:58Z) - Concept-Guided Interpretability via Neural Chunking [54.73787666584143]
ニューラルネットワークは、トレーニングデータの規則性を反映した生の集団活動のパターンを示す。
本稿では,ラベルの可利用性と次元性に基づいて,これら新たな実体を抽出する3つの手法を提案する。
私たちの研究は、認知原則と自然主義的データの構造の両方を活用する、解釈可能性の新しい方向性を指し示しています。
論文 参考訳(メタデータ) (2025-05-16T13:49:43Z) - Analyzing the Effect of $k$-Space Features in MRI Classification Models [0.0]
医用イメージングに適した説明可能なAI手法を開発した。
我々は、画像領域と周波数領域の両方にわたるMRIスキャンを分析する畳み込みニューラルネットワーク(CNN)を採用している。
このアプローチは、初期のトレーニング効率を高めるだけでなく、追加機能がモデル予測にどのように影響するかの理解を深めます。
論文 参考訳(メタデータ) (2024-09-20T15:43:26Z) - Manipulating Feature Visualizations with Gradient Slingshots [53.94925202421929]
特徴可視化(FV)は、ディープニューラルネットワーク(DNN)で学んだ概念を解釈するための広く使われている手法である。
本稿では,モデルアーキテクチャを変更したり,性能を著しく劣化させたりすることなくFVの操作を可能にする新しい手法,Gradient Slingshotsを提案する。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - Assisting clinical practice with fuzzy probabilistic decision trees [2.0999441362198907]
本研究では,確率木とファジィ論理を組み合わせて臨床実習を支援する新しい手法であるFPTを提案する。
FPTとその予測は、この目的のために特別に設計されたユーザフレンドリーなインターフェースを用いて、直感的に臨床実践を支援することができることを示す。
論文 参考訳(メタデータ) (2023-04-16T14:05:16Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Demystifying Deep Learning Models for Retinal OCT Disease Classification
using Explainable AI [0.6117371161379209]
様々な深層学習技術の採用は、非常に一般的かつ効果的であり、網膜光コヒーレンス・トモグラフィー分野に実装する上でも同様に真実である。
これらの技術はブラックボックスの特徴を持ち、医療従事者がそれらの成果を完全に信頼できないようにする。
本稿では,この研究に説明可能なAIを導入したLimeの使用とともに,比較的小型で簡易な自己開発CNNモデルを提案する。
論文 参考訳(メタデータ) (2021-11-06T13:54:07Z) - Transparency of Deep Neural Networks for Medical Image Analysis: A
Review of Interpretability Methods [3.3918638314432936]
ディープニューラルネットワークは、多くのタスクにおいて、臨床医と同じまたはより良いパフォーマンスを示している。
現在のディープ・ニューラル・ソリューションは、意思決定プロセスに関する具体的な知識の欠如からブラックボックスと呼ばれる。
通常の臨床ワークフローに組み込む前に、ディープニューラルネットワークの解釈可能性を保証する必要がある。
論文 参考訳(メタデータ) (2021-11-01T01:42:26Z) - TorchEsegeta: Framework for Interpretability and Explainability of
Image-based Deep Learning Models [0.0]
臨床医はしばしば自動画像処理アプローチ、特にディープラーニングに基づく手法の適用に懐疑的である。
本稿では,アルゴリズムの決定に最も影響を及ぼす解剖学的領域を記述することによって,ディープラーニングアルゴリズムの結果の解釈と説明を支援するアプローチを提案する。
ディープラーニングモデルに様々な解釈可能性および説明可能性技術を適用するための統合フレームワークであるTorchEsegetaを提案する。
論文 参考訳(メタデータ) (2021-10-16T01:00:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。