Explainable Graph Neural Networks via Structural Externalities
- URL: http://arxiv.org/abs/2507.17848v1
- Date: Sat, 19 Jul 2025 07:36:47 GMT
- Title: Explainable Graph Neural Networks via Structural Externalities
- Authors: Lijun Wu, Dong Hao, Zhiyi Fan,
- Abstract summary: GraphEXT is an explainability framework for Graph Neural Networks (GNNs)<n>It partitions graph nodes into coalitions, decomposing the original graph into independent subgraphs.<n>It places greater emphasis on the interactions among nodes and the impact of structural changes on GNN predictions.
- Score: 26.560662295366548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have achieved outstanding performance across a wide range of graph-related tasks. However, their "black-box" nature poses significant challenges to their explainability, and existing methods often fail to effectively capture the intricate interaction patterns among nodes within the network. In this work, we propose a novel explainability framework, GraphEXT, which leverages cooperative game theory and the concept of social externalities. GraphEXT partitions graph nodes into coalitions, decomposing the original graph into independent subgraphs. By integrating graph structure as an externality and incorporating the Shapley value under externalities, GraphEXT quantifies node importance through their marginal contributions to GNN predictions as the nodes transition between coalitions. Unlike traditional Shapley value-based methods that primarily focus on node attributes, our GraphEXT places greater emphasis on the interactions among nodes and the impact of structural changes on GNN predictions. Experimental studies on both synthetic and real-world datasets show that GraphEXT outperforms existing baseline methods in terms of fidelity across diverse GNN architectures , significantly enhancing the explainability of GNN models.
Related papers
- Probability Passing for Graph Neural Networks: Graph Structure and Representations Joint Learning [8.392545965667288]
Graph Neural Networks (GNNs) have achieved notable success in the analysis of non-Euclidean data across a wide range of domains.
To solve this problem, Latent Graph Inference (LGI) is proposed to infer a task-specific latent structure by computing similarity or edge probability of node features.
We introduce a novel method called Probability Passing to refine the generated graph structure by aggregating edge probabilities of neighboring nodes.
arXiv Detail & Related papers (2024-07-15T13:01:47Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Graph Transformer GANs for Graph-Constrained House Generation [223.739067413952]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The GTGAN learns effective graph node relations in an end-to-end fashion for the challenging graph-constrained house generation task.
arXiv Detail & Related papers (2023-03-14T20:35:45Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Curvature Graph Neural Network [8.477559786537919]
We introduce discrete graph curvature (the Ricci curvature) to quantify the strength of structural connection of pairwise nodes.
We propose Curvature Graph Neural Network (CGNN), which effectively improves the adaptive locality ability of GNNs.
The experimental results on synthetic datasets show that CGNN effectively exploits the topology structure information.
arXiv Detail & Related papers (2021-06-30T00:56:03Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.