AFRDA: Attentive Feature Refinement for Domain Adaptive Semantic Segmentation
- URL: http://arxiv.org/abs/2507.17957v1
- Date: Wed, 23 Jul 2025 22:02:17 GMT
- Title: AFRDA: Attentive Feature Refinement for Domain Adaptive Semantic Segmentation
- Authors: Md. Al-Masrur Khan, Durgakant Pushp, Lantao Liu,
- Abstract summary: In Unsupervised Domain Adaptive Semantic (UDA-SS) a model is trained on labeled source domain data and adapted to an unlabeled target domain.<n>Existing UDA-SS methods often struggle to balance fine-grained local details with global contextual information.<n>We introduce the Adaptive Feature Refinement (AFR) module, which enhances segmentation accuracy by refining highresolution features.
- Score: 8.541106387148872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Unsupervised Domain Adaptive Semantic Segmentation (UDA-SS), a model is trained on labeled source domain data (e.g., synthetic images) and adapted to an unlabeled target domain (e.g., real-world images) without access to target annotations. Existing UDA-SS methods often struggle to balance fine-grained local details with global contextual information, leading to segmentation errors in complex regions. To address this, we introduce the Adaptive Feature Refinement (AFR) module, which enhances segmentation accuracy by refining highresolution features using semantic priors from low-resolution logits. AFR also integrates high-frequency components, which capture fine-grained structures and provide crucial boundary information, improving object delineation. Additionally, AFR adaptively balances local and global information through uncertaintydriven attention, reducing misclassifications. Its lightweight design allows seamless integration into HRDA-based UDA methods, leading to state-of-the-art segmentation performance. Our approach improves existing UDA-SS methods by 1.05% mIoU on GTA V --> Cityscapes and 1.04% mIoU on Synthia-->Cityscapes. The implementation of our framework is available at: https://github.com/Masrur02/AFRDA
Related papers
- MICDrop: Masking Image and Depth Features via Complementary Dropout for Domain-Adaptive Semantic Segmentation [155.0797148367653]
Unsupervised Domain Adaptation (UDA) is the task of bridging the domain gap between a labeled source domain and an unlabeled target domain.
We propose to leverage geometric information, i.e., depth predictions, as depth discontinuities often coincide with segmentation boundaries.
We show that our method can be plugged into various recent UDA methods and consistently improve results across standard UDA benchmarks.
arXiv Detail & Related papers (2024-08-29T12:15:10Z) - Decomposition-based Unsupervised Domain Adaptation for Remote Sensing Image Semantic Segmentation [30.606689882397223]
Unsupervised domain adaptation (UDA) techniques are vital for semantic segmentation in geosciences.
Most existing UDA methods, which focus on domain alignment at the high-level feature space, struggle to simultaneously retain local spatial details and global contextual semantics.
A novel decomposition scheme is proposed to guide domain-invariant representation learning.
arXiv Detail & Related papers (2024-04-06T07:13:49Z) - Spatio-Temporal Pixel-Level Contrastive Learning-based Source-Free
Domain Adaptation for Video Semantic Segmentation [117.39092621796753]
Source Domain Adaptation (SFDA) setup aims to adapt a source-trained model to the target domain without accessing source data.
A novel method that takes full advantage of correlations oftemporal-information to tackle the absence of source data is proposed.
Experiments show that PixelL achieves un-of-the-art performance on benchmarks compared to current UDA and SFDA approaches.
arXiv Detail & Related papers (2023-03-25T05:06:23Z) - IDA: Informed Domain Adaptive Semantic Segmentation [51.12107564372869]
We propose an Domain Informed Adaptation (IDA) model, a self-training framework that mixes the data based on class-level segmentation performance.
In our IDA model, the class-level performance is tracked by an expected confidence score (ECS) and we then use a dynamic schedule to determine the mixing ratio for data in different domains.
Our proposed method is able to outperform the state-of-the-art UDA-SS method by a margin of 1.1 mIoU in the adaptation of GTA-V to Cityscapes and of 0.9 mIoU in the adaptation of SYNTHIA to City
arXiv Detail & Related papers (2023-03-05T18:16:34Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Threshold-adaptive Unsupervised Focal Loss for Domain Adaptation of
Semantic Segmentation [25.626882426111198]
Unsupervised domain adaptation (UDA) for semantic segmentation has recently gained increasing research attention.
In this paper, we propose a novel two-stage entropy-based UDA method for semantic segmentation.
Our method achieves state-of-the-art 58.4% and 59.6% mIoUs on SYNTHIA-to-Cityscapes and GTA5-to-Cityscapes using DeepLabV2 and competitive performance using the lightweight BiSeNet.
arXiv Detail & Related papers (2022-08-23T03:48:48Z) - Learning Feature Decomposition for Domain Adaptive Monocular Depth
Estimation [51.15061013818216]
Supervised approaches have led to great success with the advance of deep learning, but they rely on large quantities of ground-truth depth annotations.
Unsupervised domain adaptation (UDA) transfers knowledge from labeled source data to unlabeled target data, so as to relax the constraint of supervised learning.
We propose a novel UDA method for MDE, referred to as Learning Feature Decomposition for Adaptation (LFDA), which learns to decompose the feature space into content and style components.
arXiv Detail & Related papers (2022-07-30T08:05:35Z) - HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic
Segmentation [104.47737619026246]
Unsupervised domain adaptation (UDA) aims to adapt a model trained on the source domain to the target domain.
We propose HRDA, a multi-resolution training approach for UDA, that combines the strengths of small high-resolution crops to preserve fine segmentation details.
It significantly improves the state-of-the-art performance by 5.5 mIoU for GTA-to-Cityscapes and 4.9 mIoU for Synthia-to-Cityscapes.
arXiv Detail & Related papers (2022-04-27T18:00:26Z) - Source-Free Domain Adaptation for Semantic Segmentation [11.722728148523366]
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network-based approaches for semantic segmentation heavily rely on the pixel-level annotated data.
We propose a source-free domain adaptation framework for semantic segmentation, namely SFDA, in which only a well-trained source model and an unlabeled target domain dataset are available for adaptation.
arXiv Detail & Related papers (2021-03-30T14:14:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.