Decomposition-based Unsupervised Domain Adaptation for Remote Sensing Image Semantic Segmentation
- URL: http://arxiv.org/abs/2404.04531v2
- Date: Tue, 29 Oct 2024 01:54:54 GMT
- Title: Decomposition-based Unsupervised Domain Adaptation for Remote Sensing Image Semantic Segmentation
- Authors: Xianping Ma, Xiaokang Zhang, Xingchen Ding, Man-On Pun, Siwei Ma,
- Abstract summary: Unsupervised domain adaptation (UDA) techniques are vital for semantic segmentation in geosciences.
Most existing UDA methods, which focus on domain alignment at the high-level feature space, struggle to simultaneously retain local spatial details and global contextual semantics.
A novel decomposition scheme is proposed to guide domain-invariant representation learning.
- Score: 30.606689882397223
- License:
- Abstract: Unsupervised domain adaptation (UDA) techniques are vital for semantic segmentation in geosciences, effectively utilizing remote sensing imagery across diverse domains. However, most existing UDA methods, which focus on domain alignment at the high-level feature space, struggle to simultaneously retain local spatial details and global contextual semantics. To overcome these challenges, a novel decomposition scheme is proposed to guide domain-invariant representation learning. Specifically, multiscale high/low-frequency decomposition (HLFD) modules are proposed to decompose feature maps into high- and low-frequency components across different subspaces. This decomposition is integrated into a fully global-local generative adversarial network (GLGAN) that incorporates global-local transformer blocks (GLTBs) to enhance the alignment of decomposed features. By integrating the HLFD scheme and the GLGAN, a novel decomposition-based UDA framework called De-GLGAN is developed to improve the cross-domain transferability and generalization capability of semantic segmentation models. Extensive experiments on two UDA benchmarks, namely ISPRS Potsdam and Vaihingen, and LoveDA Rural and Urban, demonstrate the effectiveness and superiority of the proposed approach over existing state-of-the-art UDA methods. The source code for this work is accessible at https://github.com/sstary/SSRS.
Related papers
- Adversarial Diffusion Model for Unsupervised Domain-Adaptive Semantic Segmentation [8.320092945636032]
This paper presents a novel method, the Conditional and Inter-coder Connected Latent Diffusion (CICLD) based Semantic Model.
CICLD incorporates a conditioning mechanism to improve contextual understanding during segmentation and an inter-coder connection to preserve fine-labelled details and spatial hierarchies.
Extensive experiments are conducted across three benchmark datasets-GTA5, Synthia, and Cityscape-shows that CICLD outperforms state-of-the-art UDA methods.
arXiv Detail & Related papers (2024-12-22T04:55:41Z) - Exploring Semantic Consistency and Style Diversity for Domain Generalized Semantic Segmentation [4.850207292777464]
Domain Generalized Semantic aims to enhance the generalization of semantic segmentation across unknown target domains.
We introduce SCSD for Semantic Consistency prediction and Style Diversity generalization.
SCSD significantly outperforms existing state-of-theart methods.
arXiv Detail & Related papers (2024-12-16T18:20:06Z) - A Universal Degradation-based Bridging Technique for Domain Adaptive Semantic Segmentation [32.1141872384702]
DiDA is a universal degradation-based bridging technique formalized as a diffusion forward process.
As a plug-and-play solution, DiDA supports various degradation operations and seamlessly integrates with existing UDA methods.
arXiv Detail & Related papers (2024-12-13T18:35:27Z) - Multisource Collaborative Domain Generalization for Cross-Scene Remote Sensing Image Classification [57.945437355714155]
Cross-scene image classification aims to transfer prior knowledge of ground materials to annotate regions with different distributions.
Existing approaches focus on single-source domain generalization to unseen target domains.
We propose a novel multi-source collaborative domain generalization framework (MS-CDG) based on homogeneity and heterogeneity characteristics of multi-source remote sensing data.
arXiv Detail & Related papers (2024-12-05T06:15:08Z) - Unified Domain Adaptive Semantic Segmentation [96.74199626935294]
Unsupervised Adaptive Domain Semantic (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain.
We propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies.
Our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks.
arXiv Detail & Related papers (2023-11-22T09:18:49Z) - Generative Domain Adaptation for Face Anti-Spoofing [38.12738183385737]
Face anti-spoofing approaches based on unsupervised domain adaption (UDA) have drawn growing attention due to promising performances for target scenarios.
Most existing UDA FAS methods typically fit the trained models to the target domain via aligning the distribution of semantic high-level features.
We propose a novel perspective of UDA FAS that directly fits the target data to the models, stylizes the target data to the source-domain style via image translation, and further feeds the stylized data into the well-trained source model for classification.
arXiv Detail & Related papers (2022-07-20T16:24:57Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - HSVA: Hierarchical Semantic-Visual Adaptation for Zero-Shot Learning [74.76431541169342]
Zero-shot learning (ZSL) tackles the unseen class recognition problem, transferring semantic knowledge from seen classes to unseen ones.
We propose a novel hierarchical semantic-visual adaptation (HSVA) framework to align semantic and visual domains.
Experiments on four benchmark datasets demonstrate HSVA achieves superior performance on both conventional and generalized ZSL.
arXiv Detail & Related papers (2021-09-30T14:27:50Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Contextual-Relation Consistent Domain Adaptation for Semantic
Segmentation [44.19436340246248]
This paper presents an innovative local contextual-relation consistent domain adaptation technique.
It aims to achieve local-level consistencies during the global-level alignment.
Experiments demonstrate its superior segmentation performance as compared with state-of-the-art methods.
arXiv Detail & Related papers (2020-07-05T19:00:46Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.