Molecular Properties in Quantum-Classical Auxiliary-Field Quantum Monte Carlo: Correlated Sampling with Application to Accurate Nuclear Forces
- URL: http://arxiv.org/abs/2507.17992v1
- Date: Wed, 23 Jul 2025 23:51:10 GMT
- Title: Molecular Properties in Quantum-Classical Auxiliary-Field Quantum Monte Carlo: Correlated Sampling with Application to Accurate Nuclear Forces
- Authors: Joshua J. Goings, Kyujin Shin, Seunghyo Noh, Woomin Kyoung, Donghwi Kim, Jihye Baek, Martin Roetteler, Evgeny Epifanovsky, Luning Zhao,
- Abstract summary: We extend correlated sampling from classical auxiliary-field quantum Monte Carlo to the quantum-classical (QCAFQMC) framework.<n>We demonstrate significant improvements over single-reference methods in force evaluations for N$ wave$ and stretched linear H$_4$, particularly in strongly correlated regions.<n>We also apply our methodology to the MEA-CO$$ carbon capture reaction, employing quantum information metrics for active space selection and matchgate shadows.
- Score: 1.2189422792863451
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We extend correlated sampling from classical auxiliary-field quantum Monte Carlo to the quantum-classical (QC-AFQMC) framework, enabling accurate nuclear force computations crucial for geometry optimization and reaction dynamics. Stochastic electronic structure methods typically encounter prohibitive statistical noise when computing gradients via finite differences. To address this, our approach maximizes correlation between nearby geometries by synchronizing random number streams, aligning orbitals, using deterministic integral decompositions, and employing a consistent set of classical shadow measurements defined at a single reference geometry. Crucially, reusing this single, reference-defined shadow ensemble eliminates the need for additional quantum measurements at displaced geometries. Together, these methodological choices substantially reduce statistical variance in computed forces. We validate the method across hydrogen chains, confirming accuracy throughout varying correlation regimes, and demonstrate significant improvements over single-reference methods in force evaluations for N$_2$ and stretched linear H$_4$, particularly in strongly correlated regions where conventional coupled cluster approaches qualitatively fail. Orbital-optimized trial wave functions further boost accuracy for demanding cases such as stretched CO$_2$, without increasing quantum resource requirements. Finally, we apply our methodology to the MEA-CO$_2$ carbon capture reaction, employing quantum information metrics for active space selection and matchgate shadows for efficient overlap evaluations, establishing QC-AFQMC as a robust framework for exploring complex reaction pathways.
Related papers
- Calibration of Quantum Devices via Robust Statistical Methods [45.464983015777314]
We numerically analyze advanced statistical methods for Bayesian inference against the state-of-the-art in quantum parameter learning.<n>We show advantages of these approaches over existing ones, namely under multi-modality and high dimensionality.<n>Our findings have applications in challenging quantumcharacterization tasks namely learning the dynamics of open quantum systems.
arXiv Detail & Related papers (2025-07-09T15:22:17Z) - Computing Quantum Resources using Tensor Cross Interpolation [0.0]
We propose a general procedure based on the family of Cross Interpolation (TCI) algorithms to address this challenge.<n>We compute the non-stabilizerness R'enyi entropy (SRE) and Relative Entropy of Coherence (REC) considering the 1D and 2D ferromagnetic Ising models.<n>This method not only demonstrates its versatility, but also provides a generic framework for exploring other quantum information quantifiers in complex systems.
arXiv Detail & Related papers (2025-02-10T19:00:24Z) - Accelerating Quantum Reinforcement Learning with a Quantum Natural Policy Gradient Based Approach [36.05085942729295]
This paper introduces a Quantum Natural Policy Gradient (QNPG) algorithm, which replaces the random sampling used in classicalNPG estimators with a deterministic gradient estimation approach.<n>The proposed QNPG algorithm achieves a sample complexity of $tildemathcalO(epsilon-1.5)$ for queries to the quantum oracle, significantly improving the classical lower bound of $tildemathcalO(epsilon-2)$ for queries to the Markov Decision Process (MDP)
arXiv Detail & Related papers (2025-01-27T17:38:30Z) - Quantum Natural Stochastic Pairwise Coordinate Descent [13.986982036653632]
Variational quantum algorithms, optimized using gradient-based methods, often exhibit sub-optimal convergence performance.<n>Quantum natural gradient descent (QNGD) is a more efficient method that incorporates the geometry of the state space via a quantum information metric.<n>We formulate a novel quantum information metric and construct an unbiased estimator for this metric using single-shot measurements.
arXiv Detail & Related papers (2024-07-18T18:57:29Z) - Using a Feedback-Based Quantum Algorithm to Analyze the Critical Properties of the ANNNI Model Without Classical Optimization [0.0]
We investigate the critical properties of the Anisotropic Next-Nearest-Neighbor Ising (ANNNI) model using a feedback-based quantum algorithm (FQA)<n>By exploiting symmetries in the algorithm, we show how targeted initial states can increase convergence and facilitate the study of excited states.<n>Our findings highlight FQA's potential as a versatile tool for studying quantum systems, providing insights into quantum phase transitions and the magnetic properties of complex spin models.
arXiv Detail & Related papers (2024-06-25T20:58:03Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Tailored and Externally Corrected Coupled Cluster with Quantum Inputs [0.0]
We propose to use wavefunction overlaps obtained from a quantum computer as inputs for the classical split-amplitude techniques.
We provide insights into which wavefunction preparation schemes have a chance of yielding quantum advantage.
arXiv Detail & Related papers (2023-12-13T12:57:39Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Photonic Quantum Computing For Polymer Classification [62.997667081978825]
Two polymer classes visual (VIS) and near-infrared (NIR) are defined based on the size of the polymer gaps.
We present a hybrid classical-quantum approach to the binary classification of polymer structures.
arXiv Detail & Related papers (2022-11-22T11:59:52Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Analytical nonadiabatic couplings and gradients within the
state-averaged orbital-optimized variational quantum eigensolver [0.0]
We introduce several technical and analytical extensions to our recent state-averaged orbital-optimized variational quantum eigensolver (SA-OO-VQE) algorithm.
Motivated by the limitations of current quantum computers, the first extension consists in an efficient state-resolution procedure to find the SA-OO-VQE eigenstates.
The second extension allows for the estimation of analytical gradients and non-adiabatic couplings.
arXiv Detail & Related papers (2021-09-09T22:38:56Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.