Tailored and Externally Corrected Coupled Cluster with Quantum Inputs
- URL: http://arxiv.org/abs/2312.08110v2
- Date: Thu, 11 Jan 2024 07:19:17 GMT
- Title: Tailored and Externally Corrected Coupled Cluster with Quantum Inputs
- Authors: Maximilian Scheurer, Gian-Luca R. Anselmetti, Oumarou Oumarou,
Christian Gogolin, Nicholas C. Rubin
- Abstract summary: We propose to use wavefunction overlaps obtained from a quantum computer as inputs for the classical split-amplitude techniques.
We provide insights into which wavefunction preparation schemes have a chance of yielding quantum advantage.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose to use wavefunction overlaps obtained from a quantum computer as
inputs for the classical split-amplitude techniques, tailored and externally
corrected coupled cluster, to achieve balanced treatment of static and dynamic
correlation effects in molecular electronic structure simulations. By combining
insights from statistical properties of matchgate shadows, which are used to
measure quantum trial state overlaps, with classical correlation diagnostics,
we are able to provide quantum resource estimates well into the classically no
longer exactly solvable regime. We find that rather imperfect wavefunctions and
remarkably low shot counts are sufficient to cure qualitative failures of plain
coupled cluster singles doubles and to obtain chemically precise dynamic
correlation energy corrections. We provide insights into which wavefunction
preparation schemes have a chance of yielding quantum advantage, and we test
our proposed method using overlaps measured on Google's Sycamore device.
Related papers
- Projective Quantum Eigensolver with Generalized Operators [0.0]
We develop a methodology for determining the generalized operators in terms of a closed form residual equations in the PQE framework.
With the application on several molecular systems, we have demonstrated our ansatz achieves similar accuracy to the (disentangled) UCC with singles, doubles and triples.
arXiv Detail & Related papers (2024-10-21T15:40:22Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Say NO to Optimization: A Non-Orthogonal Quantum Eigensolver [0.0]
A balanced description of both static and dynamic correlations in electronic systems with nearly degenerate low-lying states presents a challenge for multi-configurational methods on classical computers.
We present here a quantum algorithm utilizing the action of correlating cluster operators to provide high-quality wavefunction ans"atze.
arXiv Detail & Related papers (2022-05-18T16:20:36Z) - Exploring quantum correlations in a hybrid optomechanical system [0.0]
We propose a scheme of two coupled optomechanical cavities to enhance the intracavity entanglement.
Photon hopping is employed to establish couplings between optical modes, while phonon is utilized to establish couplings between mechanical tunneling resonators.
arXiv Detail & Related papers (2022-04-16T08:47:50Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Digital quantum simulation of strong correlation effects with iterative
quantum phase estimation over the variational quantum eigensolver algorithm:
$\mathrm{H_4}$ on a circle as a case study [0.0]
We generate the initial state by using the classical-quantum hybrid variational quantum eigensolver algorithm with unitary coupled cluster ansatz.
We demonstrate that a carefully and appropriately prepared initial state can greatly reduce the effects of noise due to sampling in the estimation of the desired eigenphase.
arXiv Detail & Related papers (2021-10-06T15:48:53Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Test of the unitary coupled-cluster variational quantum eigensolver for
a simple strongly correlated condensed-matter system [0.0]
The variational quantum eigensolver has been proposed as a low-depth quantum circuit.
We show details associated with the factorized form of the unitary coupled-cluster variant of this algorithm.
This work show some of the subtle issues one needs to take into account when applying this algorithm in practice, especially to condensed-matter systems.
arXiv Detail & Related papers (2020-01-20T03:28:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.