Quantum Natural Stochastic Pairwise Coordinate Descent
- URL: http://arxiv.org/abs/2407.13858v2
- Date: Tue, 03 Jun 2025 21:45:11 GMT
- Title: Quantum Natural Stochastic Pairwise Coordinate Descent
- Authors: Mohammad Aamir Sohail, Mohsen Heidari, S. Sandeep Pradhan,
- Abstract summary: Variational quantum algorithms, optimized using gradient-based methods, often exhibit sub-optimal convergence performance.<n>Quantum natural gradient descent (QNGD) is a more efficient method that incorporates the geometry of the state space via a quantum information metric.<n>We formulate a novel quantum information metric and construct an unbiased estimator for this metric using single-shot measurements.
- Score: 13.986982036653632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational quantum algorithms, optimized using gradient-based methods, often exhibit sub-optimal convergence performance due to their dependence on Euclidean geometry. Quantum natural gradient descent (QNGD) is a more efficient method that incorporates the geometry of the state space via a quantum information metric. However, QNGD is computationally intensive and suffers from high sample complexity. In this work, we formulate a novel quantum information metric and construct an unbiased estimator for this metric using single-shot measurements. We develop a quantum optimization algorithm that leverages the geometry of the state space via this estimator while avoiding full-state tomography, as in conventional techniques. We provide the convergence analysis of the algorithm under mild conditions. Furthermore, we provide experimental results that demonstrate the better sample complexity and faster convergence of our algorithm compared to the state-of-the-art approaches. Our results illustrate the algorithm's ability to avoid saddle points and local minima.
Related papers
- Online Quantum State Tomography via Stochastic Gradient Descent [15.191189544765427]
We initiate rigorous measurements of online quantum tomography tomography (QST)<n>We show that the algorithms for online low-rank QST both in both in terms of the state rank and the unknown quantum state achieve nearly optimal complexity while with high probability.<n>In particular, our algorithms are better than the state-of-the-art non-efficient Q-of algorithms.
arXiv Detail & Related papers (2025-07-10T10:02:52Z) - Variational quantum algorithms with exact geodesic transport [0.0]
Variational quantum algorithms (VQAs) are promising candidates for near-term applications of quantum computers.<n>We introduce exact-geodesic VQAs, a curvature-aware framework that enables analytic Riemannian optimization of variational quantum circuits.
arXiv Detail & Related papers (2025-06-20T18:00:10Z) - Survey on Algorithms for multi-index models [45.143425167349314]
We review the literature on algorithms for estimating the index space in a multi-index model.<n>The primary focus is on computationally efficient (polynomial-time) algorithms in Gaussian space, the assumptions under which consistency is guaranteed by these methods, and their sample complexity.
arXiv Detail & Related papers (2025-04-07T18:50:11Z) - Fast Expectation Value Calculation Speedup of Quantum Approximate Optimization Algorithm: HoLCUs QAOA [55.2480439325792]
We present a new method for calculating expectation values of operators that can be expressed as a linear combination of unitary (LCU) operators.<n>This method is general for any quantum algorithm and is of particular interest in the acceleration of variational quantum algorithms.
arXiv Detail & Related papers (2025-03-03T17:15:23Z) - Classical post-processing approach for quantum amplitude estimation [0.0]
We propose an approach for quantum amplitude estimation (QAE) designed to enhance computational efficiency while minimizing the reliance on quantum resources.
Our method leverages quantum computers to generate a sequence of signals, from which the quantum amplitude is inferred through classical post-processing techniques.
arXiv Detail & Related papers (2025-02-08T15:51:31Z) - Quantum Natural Gradient with Geodesic Corrections for Small Shallow Quantum Circuits [0.0]
We extend the Quantum Natural Gradient (QNG) method by introducing higher-order and geodesic corrections.
Our approach paves the way for more efficient quantum algorithms, leveraging the advantages of geometric methods.
arXiv Detail & Related papers (2024-09-05T15:54:02Z) - Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
A Quantum Natural Gradient (QNG) algorithm for optimization of variational quantum circuits has been proposed recently.<n>Momentum-QNG is more effective to escape local minima and plateaus in the variational parameter space.
arXiv Detail & Related papers (2024-09-03T15:21:16Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Compressed sensing enhanced by quantum approximate optimization algorithm [0.0]
We present a framework to deal with a range of large scale compressive sensing problems using a quantum subroutine.
Our results explore a promising path of applying quantum computers in the compressive sensing field.
arXiv Detail & Related papers (2024-03-26T05:26:51Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
We show the first tight characterization of the optimal Hessian-dependent sample complexity.
A Hessian-independent algorithm universally achieves the optimal sample complexities for all Hessian instances.
The optimal sample complexities achieved by our algorithm remain valid for heavy-tailed noise distributions.
arXiv Detail & Related papers (2023-06-21T17:03:22Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry [3.5097082077065003]
We introduce a generalization of quantum natural gradient descent to parameterized mixed states.
We also provide a robust first-order approximating algorithm, Quantum-Probabilistic Mirror Descent.
Our approaches extend previously sample-efficient techniques to allow for flexibility in model choice.
arXiv Detail & Related papers (2022-06-09T17:58:15Z) - Adiabatic quantum computing with parameterized quantum circuits [0.0]
We propose a discrete version of adiabatic quantum computing that can be implemented in a near-term device.
We compare our proposed algorithm with the Variational Quantum Eigensolver on two classical optimization problems.
arXiv Detail & Related papers (2022-06-09T09:31:57Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Variational Quantum Algorithms for Trace Distance and Fidelity
Estimation [7.247285982078057]
We introduce hybrid quantum-classical algorithms for two distance measures on near-term quantum devices.
First, we introduce the Variational Trace Distance Estimation (VTDE) algorithm.
Second, we introduce the Variational Fidelity Estimation (VFE) algorithm.
arXiv Detail & Related papers (2020-12-10T15:56:58Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.