論文の概要: Celeb-DF++: A Large-scale Challenging Video DeepFake Benchmark for Generalizable Forensics
- arxiv url: http://arxiv.org/abs/2507.18015v1
- Date: Thu, 24 Jul 2025 01:12:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:42.812005
- Title: Celeb-DF++: A Large-scale Challenging Video DeepFake Benchmark for Generalizable Forensics
- Title(参考訳): Celeb-DF++: 一般化可能な法医学のための大規模ビデオディープフェイクベンチマーク
- Authors: Yuezun Li, Delong Zhu, Xinjie Cui, Siwei Lyu,
- Abstract要約: Celeb-DF++は、一般化可能な法医学の課題に特化した新しいベンチマークである。
一般的に遭遇する3つの偽造シナリオ: Face-Swap (FS), Face-Reenactment (FR), Talking-face (TF)。
- 参考スコア(独自算出の注目度): 35.69057766374133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of AI technologies has significantly increased the diversity of DeepFake videos circulating online, posing a pressing challenge for \textit{generalizable forensics}, \ie, detecting a wide range of unseen DeepFake types using a single model. Addressing this challenge requires datasets that are not only large-scale but also rich in forgery diversity. However, most existing datasets, despite their scale, include only a limited variety of forgery types, making them insufficient for developing generalizable detection methods. Therefore, we build upon our earlier Celeb-DF dataset and introduce {Celeb-DF++}, a new large-scale and challenging video DeepFake benchmark dedicated to the generalizable forensics challenge. Celeb-DF++ covers three commonly encountered forgery scenarios: Face-swap (FS), Face-reenactment (FR), and Talking-face (TF). Each scenario contains a substantial number of high-quality forged videos, generated using a total of 22 various recent DeepFake methods. These methods differ in terms of architectures, generation pipelines, and targeted facial regions, covering the most prevalent DeepFake cases witnessed in the wild. We also introduce evaluation protocols for measuring the generalizability of 24 recent detection methods, highlighting the limitations of existing detection methods and the difficulty of our new dataset.
- Abstract(参考訳): AI技術の急速な進歩は、オンラインで流通するDeepFakeビデオの多様性を著しく向上させ、単一のモデルを使用して、目に見えないDeepFakeタイプを広範囲に検出する、‘textit{ Generalizable forensics}, \ie’という、押し寄せる挑戦を招いた。
この課題に対処するには、大規模なだけでなく、偽りの多様性にも富むデータセットが必要である。
しかし、既存のデータセットの多くは、その規模にもかかわらず、限られた種類の偽造型しか含んでおらず、一般化可能な検出方法を開発するには不十分である。
そこで我々は,これまでのCeleb-DFデータセットに基づいて,大規模かつ挑戦的な新しいDeepFakeベンチマークである {Celeb-DF++} を紹介した。
Celeb-DF++は、Face-swap (FS)、Face-reenactment (FR)、Talking-face (TF)の3つの一般的な偽造シナリオをカバーしている。
それぞれのシナリオには、22種類の最新のDeepFakeメソッドを使用して生成された、かなりの数の高品質な鍛造ビデオが含まれている。
これらの方法は、アーキテクチャ、生成パイプライン、ターゲットの顔領域の点で異なり、野生で目撃された最も一般的なDeepFakeのケースをカバーする。
また,24種類の検出手法の一般化性を評価するための評価プロトコルを導入し,既存の検出手法の限界と新しいデータセットの難しさを強調した。
関連論文リスト
- Cross-Branch Orthogonality for Improved Generalization in Face Deepfake Detection [43.2796409299818]
ディープフェイクは法執行機関や一般大衆にとって迷惑になっている。
既存のディープフェイク検出器は、ディープフェイク生成のペースの改善に追随するのに苦労している。
本稿では,粗い空間情報,意味情報,それらの相互作用を活用する新しい戦略を提案する。
論文 参考訳(メタデータ) (2025-05-08T01:49:53Z) - DF40: Toward Next-Generation Deepfake Detection [62.073997142001424]
既存の研究は、ある特定のデータセットで検出器をトレーニングし、他の一般的なディープフェイクデータセットでテストすることで、トップノーチ検出アルゴリズムとモデルを識別する。
しかし、これらの「勝者」は現実の世界に潜む無数の現実的で多様なディープフェイクに取り組むために真に応用できるのだろうか?
我々は,40の異なるディープフェイク技術からなるDF40という,高度に多様なディープフェイク検出データセットを構築した。
論文 参考訳(メタデータ) (2024-06-19T12:35:02Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
既存の検出アプローチは、ディープフェイクビデオにおける特定のアーティファクトの探索に寄与する。
未探索の音声-顔のマッチングビューからディープフェイク検出を行う。
我々のモデルは、他の最先端の競合と比較して、大幅に性能が向上する。
論文 参考訳(メタデータ) (2022-03-04T09:08:50Z) - Model Attribution of Face-swap Deepfake Videos [39.771800841412414]
まず、いくつかのAutoencoderモデルに基づいて、DeepFakes from Different Models (DFDM)を用いた新しいデータセットを導入する。
具体的には、エンコーダ、デコーダ、中間層、入力解像度、圧縮比の5つの世代モデルを用いて、合計6450のDeepfakeビデオを生成する。
我々は,Deepfakesモデルの属性を多クラス分類タスクとして捉え,Deepfakes間の差異を探索するための空間的・時間的注意に基づく手法を提案する。
論文 参考訳(メタデータ) (2022-02-25T20:05:18Z) - OpenForensics: Large-Scale Challenging Dataset For Multi-Face Forgery
Detection And Segmentation In-The-Wild [48.67582300190131]
本稿では,多面フォージェリ検出とセグメント化という2つの新しい対策課題について述べる。
制約のない自然の場面で、複数の人間の顔に偽の顔を置くことは、従来のディープフェイク認識タスクよりもはるかに難しい。
豊富なアノテーションによって、私たちのOpenForensicsデータセットは、ディープフェイク防止と一般的な人間の顔検出の両方の研究に大きな可能性を秘めています。
論文 参考訳(メタデータ) (2021-07-30T08:15:41Z) - One Detector to Rule Them All: Towards a General Deepfake Attack
Detection Framework [19.762839181838388]
本稿では,LSTMに基づくResidual Network(CLRNet)を導入し,未知の未確認ディープフェイクに対処する。
我々のCLRNetモデルは、93.86%の精度で高品質なDFWビデオに対してうまく一般化できることを実証した。
論文 参考訳(メタデータ) (2021-05-01T08:02:59Z) - Face Forensics in the Wild [121.23154918448618]
我々は、ffiw-10kと呼ばれる新しい大規模データセットを構築し、高品質の偽造ビデオ1万本を含む。
操作手順は完全自動で、ドメイン対逆品質評価ネットワークによって制御されます。
さらに,多人数顔偽造検出の課題に取り組むための新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-30T05:06:19Z) - The DeepFake Detection Challenge (DFDC) Dataset [8.451007921188019]
Deepfakesは、誰でも一つのビデオで2つのIDを交換できるテクニックだ。
この新たな脅威に対処するため、私たちは非常に大きな顔スワップビデオデータセットを構築しました。
記録されたすべての被験者は、顔障害者データセットの構築中にその類似性を変更し、参加することに同意した。
論文 参考訳(メタデータ) (2020-06-12T18:15:55Z) - DeeperForensics-1.0: A Large-Scale Dataset for Real-World Face Forgery
Detection [93.24684159708114]
DeeperForensics-1.0は、これまでで最大の顔偽造検出データセットであり、合計で1760万フレームの6万本のビデオで構成されている。
生成されたビデオの品質は、既存のデータセットよりも優れており、ユーザ研究によって検証されている。
このベンチマークには隠れたテストセットがあり、人間の評価において高い認識スコアを達成する操作されたビデオを含んでいる。
論文 参考訳(メタデータ) (2020-01-09T14:37:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。