Privacy-Preserving Synthetic Review Generation with Diverse Writing Styles Using LLMs
- URL: http://arxiv.org/abs/2507.18055v1
- Date: Thu, 24 Jul 2025 03:12:16 GMT
- Title: Privacy-Preserving Synthetic Review Generation with Diverse Writing Styles Using LLMs
- Authors: Tevin Atwal, Chan Nam Tieu, Yefeng Yuan, Zhan Shi, Yuhong Liu, Liang Cheng,
- Abstract summary: Synthetic data generated by Large Language Models (LLMs) provides cost-effective, scalable alternative to real-world data to facilitate model training.<n>We quantitatively assess the diversity (i.e., linguistic expression, sentiment, and user perspective) of synthetic datasets generated by several state-of-the-art LLMs.<n> Guided by the evaluation results, a prompt-based approach is proposed to enhance the diversity of synthetic reviews while preserving reviewer privacy.
- Score: 6.719863580831653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing use of synthetic data generated by Large Language Models (LLMs) presents both opportunities and challenges in data-driven applications. While synthetic data provides a cost-effective, scalable alternative to real-world data to facilitate model training, its diversity and privacy risks remain underexplored. Focusing on text-based synthetic data, we propose a comprehensive set of metrics to quantitatively assess the diversity (i.e., linguistic expression, sentiment, and user perspective), and privacy (i.e., re-identification risk and stylistic outliers) of synthetic datasets generated by several state-of-the-art LLMs. Experiment results reveal significant limitations in LLMs' capabilities in generating diverse and privacy-preserving synthetic data. Guided by the evaluation results, a prompt-based approach is proposed to enhance the diversity of synthetic reviews while preserving reviewer privacy.
Related papers
- FSPO: Few-Shot Preference Optimization of Synthetic Preference Data in LLMs Elicits Effective Personalization to Real Users [111.56469697145519]
We propose Few-Shot Preference Optimization, which reframes reward modeling as a meta-learning problem.<n>Under this framework, an LLM learns to quickly adapt to a user via a few labeled preferences from that user, constructing a personalized reward function for them.<n>We generate over 1M synthetic personalized preferences using publicly available LLMs.<n>We evaluate FSPO on personalized open-ended generation for up to 1,500 synthetic users across three domains: movie reviews, pedagogical adaptation based on educational background, and general question answering, along with a controlled human study.
arXiv Detail & Related papers (2025-02-26T17:08:46Z) - Creating Artificial Students that Never Existed: Leveraging Large Language Models and CTGANs for Synthetic Data Generation [2.4374097382908477]
We investigate whether synthetic data can be leveraged to create artificial students for serving learning analytics models.<n>Our results demonstrate the strong potential of these methods to produce high-quality synthetic datasets that resemble real students data.
arXiv Detail & Related papers (2025-01-03T12:52:51Z) - SafeSynthDP: Leveraging Large Language Models for Privacy-Preserving Synthetic Data Generation Using Differential Privacy [0.0]
We investigate capability of Large Language Models (Ms) to generate synthetic datasets with Differential Privacy (DP) mechanisms.<n>Our approach incorporates DP-based noise injection methods, including Laplace and Gaussian distributions, into the data generation process.<n>We then evaluate the utility of these DP-enhanced synthetic datasets by comparing the performance of ML models trained on them against models trained on the original data.
arXiv Detail & Related papers (2024-12-30T01:10:10Z) - Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data [104.30479583607918]
2nd FRCSyn-onGoing challenge is based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024.<n>We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition.
arXiv Detail & Related papers (2024-12-02T11:12:01Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
Anonymizing text that contains sensitive information is crucial for a wide range of applications.<n>Existing techniques face the emerging challenges of the re-identification ability of large language models.<n>We propose a framework composed of three key components: a privacy evaluator, a utility evaluator, and an optimization component.
arXiv Detail & Related papers (2024-07-16T14:28:56Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Differentially Private Tabular Data Synthesis using Large Language Models [6.6376578496141585]
This paper introduces DP-LLMTGen -- a novel framework for differentially private tabular data synthesis.
DP-LLMTGen models sensitive datasets using a two-stage fine-tuning procedure.
It generates synthetic data through sampling the fine-tuned LLMs.
arXiv Detail & Related papers (2024-06-03T15:43:57Z) - A Multi-Faceted Evaluation Framework for Assessing Synthetic Data Generated by Large Language Models [3.672850225066168]
generative AI and large language models (LLMs) have opened up new avenues for producing synthetic data.<n>Despite the potential benefits, concerns regarding privacy leakage have surfaced.<n>We introduce SynEval, an open-source evaluation framework designed to assess the fidelity, utility, and privacy preservation of synthetically generated tabular data.
arXiv Detail & Related papers (2024-04-20T08:08:28Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - Scaling While Privacy Preserving: A Comprehensive Synthetic Tabular Data
Generation and Evaluation in Learning Analytics [0.412484724941528]
Privacy poses a significant obstacle to the progress of learning analytics (LA), presenting challenges like inadequate anonymization and data misuse.
Synthetic data emerges as a potential remedy, offering robust privacy protection.
Prior LA research on synthetic data lacks thorough evaluation, essential for assessing the delicate balance between privacy and data utility.
arXiv Detail & Related papers (2024-01-12T20:27:55Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.