A Two-armed Bandit Framework for A/B Testing
- URL: http://arxiv.org/abs/2507.18118v1
- Date: Thu, 24 Jul 2025 06:05:56 GMT
- Title: A Two-armed Bandit Framework for A/B Testing
- Authors: Jinjuan Wang, Qianglin Wen, Yu Zhang, Xiaodong Yan, Chengchun Shi,
- Abstract summary: A/B testing is widely used in modern technology companies for policy evaluation and product deployment.<n>This paper introduces a two-armed bandit framework designed to improve the power of existing approaches.
- Score: 13.613624239291614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A/B testing is widely used in modern technology companies for policy evaluation and product deployment, with the goal of comparing the outcomes under a newly-developed policy against a standard control. Various causal inference and reinforcement learning methods developed in the literature are applicable to A/B testing. This paper introduces a two-armed bandit framework designed to improve the power of existing approaches. The proposed procedure consists of three main steps: (i) employing doubly robust estimation to generate pseudo-outcomes, (ii) utilizing a two-armed bandit framework to construct the test statistic, and (iii) applying a permutation-based method to compute the $p$-value. We demonstrate the efficacy of the proposed method through asymptotic theories, numerical experiments and real-world data from a ridesharing company, showing its superior performance in comparison to existing methods.
Related papers
- Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models [56.92178753201331]
We tackle average-reward infinite-horizon POMDPs with an unknown transition model.<n>We present a novel and simple estimator that overcomes this barrier.
arXiv Detail & Related papers (2025-01-30T22:29:41Z) - Top-K Pairwise Ranking: Bridging the Gap Among Ranking-Based Measures for Multi-Label Classification [120.37051160567277]
This paper proposes a novel measure named Top-K Pairwise Ranking (TKPR)
A series of analyses show that TKPR is compatible with existing ranking-based measures.
On the other hand, we establish a sharp generalization bound for the proposed framework based on a novel technique named data-dependent contraction.
arXiv Detail & Related papers (2024-07-09T09:36:37Z) - Peeking with PEAK: Sequential, Nonparametric Composite Hypothesis Tests for Means of Multiple Data Streams [38.04922933299814]
We build upon the testing-by-betting framework and provide a non-asymptotic $alpha$-level test across any stopping time.
Our experiments show that PEAK provides up to an 85% reduction in the number of samples before stopping.
arXiv Detail & Related papers (2024-02-09T01:11:34Z) - Towards Evaluating Transfer-based Attacks Systematically, Practically,
and Fairly [79.07074710460012]
adversarial vulnerability of deep neural networks (DNNs) has drawn great attention.
An increasing number of transfer-based methods have been developed to fool black-box DNN models.
We establish a transfer-based attack benchmark (TA-Bench) which implements 30+ methods.
arXiv Detail & Related papers (2023-11-02T15:35:58Z) - On Pitfalls of Test-Time Adaptation [82.8392232222119]
Test-Time Adaptation (TTA) has emerged as a promising approach for tackling the robustness challenge under distribution shifts.
We present TTAB, a test-time adaptation benchmark that encompasses ten state-of-the-art algorithms, a diverse array of distribution shifts, and two evaluation protocols.
arXiv Detail & Related papers (2023-06-06T09:35:29Z) - Integrative conformal p-values for powerful out-of-distribution testing
with labeled outliers [1.6371837018687636]
This paper develops novel conformal methods to test whether a new observation was sampled from the same distribution as a reference set.
The described methods can re-weight standard conformal p-values based on dependent side information from known out-of-distribution data.
The solution can be implemented either through sample splitting or via a novel transductive cross-validation+ scheme.
arXiv Detail & Related papers (2022-08-23T17:52:20Z) - FewNLU: Benchmarking State-of-the-Art Methods for Few-Shot Natural
Language Understanding [89.92513889132825]
We introduce an evaluation framework that improves previous evaluation procedures in three key aspects, i.e., test performance, dev-test correlation, and stability.
We open-source our toolkit, FewNLU, that implements our evaluation framework along with a number of state-of-the-art methods.
arXiv Detail & Related papers (2021-09-27T00:57:30Z) - A generalized framework for active learning reliability: survey and
benchmark [0.0]
We propose a modular framework to build on-the-fly efficient active learning strategies.
We devise 39 strategies for the solution of 20 reliability benchmark problems.
arXiv Detail & Related papers (2021-06-03T09:33:59Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.