論文の概要: When Noisy Labels Meet Class Imbalance on Graphs: A Graph Augmentation Method with LLM and Pseudo Label
- arxiv url: http://arxiv.org/abs/2507.18153v2
- Date: Fri, 25 Jul 2025 04:04:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 12:12:30.236197
- Title: When Noisy Labels Meet Class Imbalance on Graphs: A Graph Augmentation Method with LLM and Pseudo Label
- Title(参考訳): グラフ上でのクラス不均衡と雑音ラベル: LLM と Pseudo Label を用いたグラフ拡張法
- Authors: Riting Xia, Rucong Wang, Yulin Liu, Anchen Li, Xueyan Liu, Yan Zhang,
- Abstract要約: 本稿では,雑音ラベル付きクラス不均衡グラフのロバストノード分類を体系的に検討する。
本稿では,Large Language Model(LLM)とPseudo-labeling(Pseudo-labeling)に基づくグラフ拡張フレームワークであるGraphALPを提案する。
実験結果から,GraphALPは,ノイズラベル付きクラス不均衡グラフの最先端手法よりも優れた性能を示すことがわかった。
- 参考スコア(独自算出の注目度): 3.667121386226796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Class-imbalanced graph node classification is a practical yet underexplored research problem. Although recent studies have attempted to address this issue, they typically assume clean and reliable labels when processing class-imbalanced graphs. This assumption often violates the nature of real-world graphs, where labels frequently contain noise. Given this gap, this paper systematically investigates robust node classification for class-imbalanced graphs with noisy labels. We propose GraphALP, a novel Graph Augmentation framework based on Large language models (LLMs) and Pseudo-labeling techniques. Specifically, we design an LLM-based oversampling method to generate synthetic minority nodes, producing label-accurate minority nodes to alleviate class imbalance. Based on the class-balanced graphs, we develop a dynamically weighted pseudo-labeling method to obtain high-confidence pseudo labels to reduce label noise ratio. Additionally, we implement a secondary LLM-guided oversampling mechanism to mitigate potential class distribution skew caused by pseudo labels. Experimental results show that GraphALP achieves superior performance over state-of-the-art methods on class-imbalanced graphs with noisy labels.
- Abstract(参考訳): クラス不均衡グラフノード分類は、実用的だが未検討の研究課題である。
近年の研究ではこの問題に対処しようとしているが、クラス不均衡グラフを処理する際には、清潔で信頼性の高いラベルを仮定することが多い。
この仮定は、しばしばラベルがしばしばノイズを含む実世界のグラフの性質に反する。
このギャップを考慮に入れ,ノイズラベル付きクラス不均衡グラフのロバストノード分類を系統的に検討する。
本稿では,Large Language Model(LLM)とPseudo-labeling(Pseudo-labeling)に基づくグラフ拡張フレームワークであるGraphALPを提案する。
具体的には,合成マイノリティノードを生成するためのLCMに基づくオーバーサンプリング手法を設計し,クラス不均衡を軽減するためにラベル精度の高いマイノリティノードを生成する。
クラスバランスグラフに基づいて動的重み付き擬似ラベル法を開発し、高い信頼度を持つ擬似ラベルを取得し、ラベルの雑音比を低減する。
さらに、擬似ラベルによる潜在的クラス分布スキューを軽減するために、二次LLM誘導オーバーサンプリング機構を実装した。
実験結果から,GraphALPは,ノイズラベル付きクラス不均衡グラフの最先端手法よりも優れた性能を示すことがわかった。
関連論文リスト
- Robust Graph-Based Semi-Supervised Learning via $p$-Conductances [49.0776396776252]
本研究では,データラベルが不足している,あるいは破損しているような状況下でのグラフに対する半教師付き学習の課題について検討する。
我々は、$p$-laplace と Poisson の学習方法を一般化した $p$-conductance learning という手法を提案する。
コンピュータビジョンと引用データセットの実証実験結果から,本手法が低ラベルレート, 劣化ラベル, 部分ラベルレジームにおける最先端の精度を実現することを示す。
論文 参考訳(メタデータ) (2025-02-13T01:11:25Z) - Inaccurate Label Distribution Learning with Dependency Noise [52.08553913094809]
本稿では,依存雑音に基づく不正確なラベル分布学習(DN-ILDL)フレームワークを導入し,ラベル分布学習におけるノイズによる課題に対処する。
本稿では,DN-ILDLがILDL問題に効果的に対処し,既存のLCL法より優れていることを示す。
論文 参考訳(メタデータ) (2024-05-26T07:58:07Z) - Open-World Semi-Supervised Learning for Node Classification [53.07866559269709]
ノード分類のためのオープンワールド半教師付き学習(Open World SSL)は、グラフコミュニティにおいて実用的だが未探索の課題である。
オープンワールド半教師付きノード分類のためのIM Balance-AwareメソッドOpenIMAを提案する。
論文 参考訳(メタデータ) (2024-03-18T05:12:54Z) - ERASE: Error-Resilient Representation Learning on Graphs for Label Noise
Tolerance [53.73316938815873]
本稿では, ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE) という手法を提案する。
ERASEは、プロトタイプの擬似ラベルとプロパゲーションされた識別ラベルを組み合わせて、表現をエラーレジリエンスで更新する。
提案手法は, 広い雑音レベルにおいて, 複数のベースラインをクリアマージンで上回り, 高いスケーラビリティを享受できる。
論文 参考訳(メタデータ) (2023-12-13T17:59:07Z) - Resurrecting Label Propagation for Graphs with Heterophily and Label Noise [40.11022005996222]
ラベルノイズは、ディープニューラルネットワークの一般化能力を著しく低下させるため、大規模なデータセットでは一般的な課題である。
任意のヘテロフィリーの文脈におけるグラフラベルノイズについて検討し、ノイズラベルの修正とラベルの割り当てを未ラベルノードで行うことを目的とした。
R2LP$は、3つのステップからなる反復アルゴリズムである。(1) グラフを再構成してホモフィリプロパティを復元し、(2) ラベルの伝搬を利用してノイズラベルを修正し、(3) 信頼度の高いラベルを選択して次のイテレーションに保持する。
論文 参考訳(メタデータ) (2023-10-25T11:28:26Z) - Learning on Graphs under Label Noise [5.909452203428086]
我々は,ラベルノイズのあるグラフ上での学習問題を解決するために,CGNN(Consistent Graph Neural Network)と呼ばれる新しいアプローチを開発した。
具体的には、グラフの対比学習を正規化用語として採用し、拡張ノードの2つのビューが一貫した表現を持つように促進する。
グラフ上の雑音ラベルを検出するために,ホモフィリー仮定に基づくサンプル選択手法を提案する。
論文 参考訳(メタデータ) (2023-06-14T01:38:01Z) - Informative Pseudo-Labeling for Graph Neural Networks with Few Labels [12.83841767562179]
グラフニューラルネットワーク(GNN)は、グラフ上の半教師付きノード分類のための最先端の結果を得た。
非常に少数のレーベルでGNNを効果的に学習する方法の課題は、まだ解明されていない。
我々は、非常に少ないラベルを持つGNNの学習を容易にするために、InfoGNNと呼ばれる新しい情報的擬似ラベルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-20T01:49:30Z) - Instance-dependent Label-noise Learning under a Structural Causal Model [92.76400590283448]
ラベルノイズはディープラーニングアルゴリズムの性能を劣化させる。
構造因果モデルを活用することにより,実例依存型ラベルノイズ学習のための新しい生成手法を提案する。
論文 参考訳(メタデータ) (2021-09-07T10:42:54Z) - Weakly-supervised Graph Meta-learning for Few-shot Node Classification [53.36828125138149]
新しいグラフメタ学習フレームワーク - Graph Hallucination Networks (Meta-GHN) を提案する。
新たなロバストネス強化エピソードトレーニングに基づいて、Meta-GHNは、弱いラベル付きデータからクリーンノード表現を幻覚させるメタ学習を行う。
大規模な実験は、既存のグラフメタ学習研究よりもMeta-GHNの方が優れていることを示す。
論文 参考訳(メタデータ) (2021-06-12T22:22:10Z) - Unified Robust Training for Graph NeuralNetworks against Label Noise [12.014301020294154]
半監督設定でノイズの多いラベルをグラフ上で学習するための新しいフレームワークである UnionNET を提案します。
提案手法は,GNNを頑健に訓練し,ラベル修正を同時に行うための統一的なソリューションを提供する。
論文 参考訳(メタデータ) (2021-03-05T01:17:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。