論文の概要: Robust Graph-Based Semi-Supervised Learning via $p$-Conductances
- arxiv url: http://arxiv.org/abs/2502.08873v1
- Date: Thu, 13 Feb 2025 01:11:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:47:15.227536
- Title: Robust Graph-Based Semi-Supervised Learning via $p$-Conductances
- Title(参考訳): $p$-conductancesによるロバストグラフに基づく半教師付き学習
- Authors: Sawyer Jack Robertson, Chester Holtz, Zhengchao Wan, Gal Mishne, Alexander Cloninger,
- Abstract要約: 本研究では,データラベルが不足している,あるいは破損しているような状況下でのグラフに対する半教師付き学習の課題について検討する。
我々は、$p$-laplace と Poisson の学習方法を一般化した $p$-conductance learning という手法を提案する。
コンピュータビジョンと引用データセットの実証実験結果から,本手法が低ラベルレート, 劣化ラベル, 部分ラベルレジームにおける最先端の精度を実現することを示す。
- 参考スコア(独自算出の注目度): 49.0776396776252
- License:
- Abstract: We study the problem of semi-supervised learning on graphs in the regime where data labels are scarce or possibly corrupted. We propose an approach called $p$-conductance learning that generalizes the $p$-Laplace and Poisson learning methods by introducing an objective reminiscent of $p$-Laplacian regularization and an affine relaxation of the label constraints. This leads to a family of probability measure mincut programs that balance sparse edge removal with accurate distribution separation. Our theoretical analysis connects these programs to well-known variational and probabilistic problems on graphs (including randomized cuts, effective resistance, and Wasserstein distance) and provides motivation for robustness when labels are diffused via the heat kernel. Computationally, we develop a semismooth Newton-conjugate gradient algorithm and extend it to incorporate class-size estimates when converting the continuous solutions into label assignments. Empirical results on computer vision and citation datasets demonstrate that our approach achieves state-of-the-art accuracy in low label-rate, corrupted-label, and partial-label regimes.
- Abstract(参考訳): 本研究では,データラベルが不足している,あるいは破損しているような状況下でのグラフに対する半教師付き学習の課題について検討する。
我々は、$p$-Laplace と Poisson の学習方法を一般化する $p$-conductance Learning という手法を提案する。
これは、スパースエッジ除去と正確な分布分離のバランスをとる確率測度ミンカットプログラムのファミリーにつながる。
我々の理論的解析は、これらのプログラムを、グラフ上のよく知られた変分および確率的問題(ランダム化カット、有効抵抗、ワッサーシュタイン距離を含む)と結びつけ、ラベルが熱核を介して拡散されるときのロバスト性に対する動機を与える。
計算により,連続解をラベル代入に変換する際に,半平滑なニュートン共役勾配アルゴリズムを開発し,クラスサイズの推定を組み込むように拡張する。
コンピュータビジョンと引用データセットの実証実験結果から,本手法が低ラベルレート, 劣化ラベル, 部分ラベルレジームにおける最先端の精度を実現することを示す。
関連論文リスト
- Dirichlet-Based Prediction Calibration for Learning with Noisy Labels [40.78497779769083]
雑音ラベルによる学習はディープニューラルネットワーク(DNN)の一般化性能を著しく損なう
既存のアプローチでは、損失補正やサンプル選択手法によってこの問題に対処している。
そこで我々は,textitDirichlet-based Prediction (DPC) 法を解法として提案する。
論文 参考訳(メタデータ) (2024-01-13T12:33:04Z) - ERASE: Error-Resilient Representation Learning on Graphs for Label Noise
Tolerance [53.73316938815873]
本稿では, ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE) という手法を提案する。
ERASEは、プロトタイプの擬似ラベルとプロパゲーションされた識別ラベルを組み合わせて、表現をエラーレジリエンスで更新する。
提案手法は, 広い雑音レベルにおいて, 複数のベースラインをクリアマージンで上回り, 高いスケーラビリティを享受できる。
論文 参考訳(メタデータ) (2023-12-13T17:59:07Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
擬似ラベルは、弱い教師付き3Dセグメンテーションタスクに広く使われており、学習に使えるのはスパース・グラウンド・トラス・ラベルのみである。
本稿では,生成した擬似ラベルを正規化し,擬似ラベルとモデル予測とのギャップを効果的に狭めるための新しい学習戦略を提案する。
論文 参考訳(メタデータ) (2023-05-25T08:19:31Z) - Informative Pseudo-Labeling for Graph Neural Networks with Few Labels [12.83841767562179]
グラフニューラルネットワーク(GNN)は、グラフ上の半教師付きノード分類のための最先端の結果を得た。
非常に少数のレーベルでGNNを効果的に学習する方法の課題は、まだ解明されていない。
我々は、非常に少ないラベルを持つGNNの学習を容易にするために、InfoGNNと呼ばれる新しい情報的擬似ラベルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-20T01:49:30Z) - Optimizing Diffusion Rate and Label Reliability in a Graph-Based
Semi-supervised Classifier [2.4366811507669124]
Local and Global Consistency (LGC)アルゴリズムは、グラフベースの半教師付き半教師付き(GSSL)分類器の1つである。
ラベル付きインスタンスの自己影響を取り除くことは、どのように有用か、そして、それがアウト・ワン・アウトエラーにどのように関係するかについて議論する。
本研究では,ラベルの信頼性と拡散率を推定する手法を提案する。
論文 参考訳(メタデータ) (2022-01-10T16:58:52Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Unsupervised Deep Metric Learning via Orthogonality based Probabilistic
Loss [27.955068939695042]
既存の最先端のメトリック学習アプローチでは、メトリクスを学ぶためにクラスラベルが必要である。
クラスラベルを使わずにメトリクスを学習する教師なしアプローチを提案する。
擬似ラベルは、メートル法学習のガイドとなる3つの例を形成するために使用される。
論文 参考訳(メタデータ) (2020-08-22T17:13:33Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
半教師付き学習における簡単なメタ学習アルゴリズムを提案する。
その結果,提案アルゴリズムは最先端の手法に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2020-07-08T08:48:56Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
部分ラベル学習(Partial-label Learning, PLL)は、典型的な弱教師付き学習問題であり、各トレーニングインスタンスには、真のラベルである候補ラベルのセットが設けられている。
既存のほとんどの手法は、特定の方法で解決しなければならない制約付き最適化として精巧に設計されており、計算複雑性をビッグデータにスケールアップするボトルネックにしている。
本稿では,モデルと最適化アルゴリズムの柔軟性を備えた分類器の新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T08:35:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。